
 

 Submission    
No 299 

 
 
 
 
 
 

INQUIRY INTO USE OF PRIMATES AND OTHER ANIMALS 

IN MEDICAL RESEARCH IN NEW SOUTH WALES 
 
 
 

Name: Ms Kirsten  Lunoe 

Date Received: 25 March 2022 

 

 



1 
 

The animal cruelty is undeniable but moreover and perhaps more importantly for the sake of this 

argument, the scientific argument is flawed. I have copied and article from Cambridge university 

The Flaws and Human Harms of Animal Experimentation 

AYSHA AKHTAR 

Additional article information 

Abstract: 

Nonhuman animal (“animal”) experimentation is typically defended by arguments that it is reliable, 

that animals provide sufficiently good models of human biology and diseases to yield relevant 

information, and that, consequently, its use provides major human health benefits. I demonstrate 

that a growing body of scientific literature critically assessing the validity of animal experimentation 

generally (and animal modeling specifically) raises important concerns about its reliability and 

predictive value for human outcomes and for understanding human physiology. The unreliability of 

animal experimentation across a wide range of areas undermines scientific arguments in favor of the 

practice. Additionally, I show how animal experimentation often significantly harms humans through 

misleading safety studies, potential abandonment of effective therapeutics, and direction of 

resources away from more effective testing methods. The resulting evidence suggests that the 

collective harms and costs to humans from animal experimentation outweigh potential benefits and 

that resources would be better invested in developing human-based testing methods. 

Keywords: animal research, medical testing, human health, human ethics, drug development, animal 

ethics 

 

Introduction 

Annually, more than 115 million animals are used worldwide in experimentation or to supply the 

biomedical industry.1 Nonhuman animal (hereafter “animal”) experimentation falls under two 

categories: basic (i.e., investigation of basic biology and human disease) and applied (i.e., drug 

research and development and toxicity and safety testing). Regardless of its categorization, animal 

experimentation is intended to inform human biology and health sciences and to promote the safety 

and efficacy of potential treatments. Despite its use of immense resources, the animal suffering 

involved, and its impact on human health, the question of animal experimentation’s efficacy has 

been subjected to little systematic scrutiny.2 

Although it is widely accepted that medicine should be evidence based, animal experimentation as a 

means of informing human health has generally not been held, in practice, to this standard. This fact 

makes it surprising that animal experimentation is typically viewed as the default and gold standard 

of preclinical testing and is generally supported without critical examination of its validity. A survey 

published in 2008 of anecdotal cases and statements given in support of animal experimentation 

demonstrates how it has not and could not be validated as a necessary step in biomedical research, 

and the survey casts doubt on its predictive value.3 I show that animal experimentation is poorly 

predictive of human outcomes,4 that it is unreliable across a wide category of disease areas,5 and 

that existing literature demonstrates the unreliability of animal experimentation, thereby 

undermining scientific arguments in its favor. I further show that the collective harms that result 

from an unreliable practice tip the ethical scale of harms and benefits against continuation in much, 

if not all, of experimentation involving animals.6 
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Problems of Successful Translation to Humans of Data from Animal Experimentation 

Although the unreliability and limitations of animal experimentation have increasingly been 

acknowledged, there remains a general confidence within much of the biomedical community that 

they can be overcome.7 However, three major conditions undermine this confidence and explain 

why animal experimentation, regardless of the disease category studied, fails to reliably inform 

human health: (1) the effects of the laboratory environment and other variables on study outcomes, 

(2) disparities between animal models of disease and human diseases, and (3) species differences in 

physiology and genetics. I argue for the critical importance of each of these conditions. 

The Influence of Laboratory Procedures and Environments on Experimental Results 

Laboratory procedures and conditions exert influences on animals’ physiology and behaviors that 

are difficult to control and that can ultimately impact research outcomes. Animals in laboratories are 

involuntarily placed in artificial environments, usually in windowless rooms, for the duration of their 

lives. Captivity and the common features of biomedical laboratories—such as artificial lighting, 

human-produced noises, and restricted housing environments—can prevent species-typical 

behaviors, causing distress and abnormal behaviors among animals.8 Among the types of 

laboratory-generated distress is the phenomenon of contagious anxiety.9 Cortisone levels rise in 

monkeys watching other monkeys being restrained for blood collection.10 Blood pressure and heart 

rates elevate in rats watching other rats being decapitated.11 Routine laboratory procedures, such 

as catching an animal and removing him or her from the cage, in addition to the experimental 

procedures, cause significant and prolonged elevations in animals’ stress markers.12 These stress-

related changes in physiological parameters caused by the laboratory procedures and environments 

can have significant effects on test results.13 Stressed rats, for example, develop chronic 

inflammatory conditions and intestinal leakage, which add variables that can confound data.14 

A variety of conditions in the laboratory cause changes in neurochemistry, genetic expression, and 

nerve regeneration.15 In one study, for example, mice were genetically altered to develop aortic 

defects. Yet, when the mice were housed in larger cages, those defects almost completely 

disappeared.16 Providing further examples, typical noise levels in laboratories can damage blood 

vessels in animals, and even the type of flooring on which animals are tested in spinal cord injury 

experiments can affect whether a drug shows a benefit.17 

In order to control for potential confounders, some investigators have called for standardization of 

laboratory settings and procedures.18 One notable effort was made by Crabbe et al. in their 

investigation of the potential confounding influences of the laboratory environment on six mouse 

behaviors that are commonly studied in neurobehavioral experiments. Despite their “extraordinary 

lengths to equate test apparatus, testing protocols, and all possible features of animal husbandry” 

across three laboratories, there were systematic differences in test results in these labs.19 

Additionally, different mouse strains varied markedly in all behavioral tests, and for some tests the 

magnitude of genetic differences depended on the specific testing laboratory. The results suggest 

that there are important influences of environmental conditions and procedures specific to 

individual laboratories that can be difficult—perhaps even impossible—to eliminate. These 

influences can confound research results and impede extrapolation to humans. 

The Discordance between Human Diseases and Animal Models of Diseases 
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The lack of sufficient congruence between animal models and human diseases is another significant 

obstacle to translational reliability. Human diseases are typically artificially induced in animals, but 

the enormous difficulty of reproducing anything approaching the complexity of human diseases in 

animal models limits their usefulness.20 Even if the design and conduct of an animal experiment are 

sound and standardized, the translation of its results to the clinic may fail because of disparities 

between the animal experimental model and the human condition.21 

Stroke research presents one salient example of the difficulties in modeling human diseases in 

animals. Stroke is relatively well understood in its underlying pathology. Yet accurately modeling the 

disease in animals has proven to be an exercise in futility. To address the inability to replicate human 

stroke in animals, many assert the need to use more standardized animal study design protocols. 

This includes the use of animals who represent both genders and wide age ranges, who have 

comorbidities and preexisting conditions that occur naturally in humans, and who are consequently 

given medications that are indicated for human patients.22 In fact, a set of guidelines, named STAIR, 

was implemented by a stroke roundtable in 1999 (and updated in 2009) to standardize protocols, 

limit the discrepancies, and improve the applicability of animal stroke experiments to humans.23 

One of the most promising stroke treatments later to emerge was NXY-059, which proved effective 

in animal experiments. However, the drug failed in clinical trials, despite the fact that the set of 

animal experiments on this drug was considered the poster child for the new experimental 

standards.24 Despite such vigorous efforts, the development of STAIR and other criteria has yet to 

make a recognizable impact in clinical translation.25 

Under closer scrutiny, it is not difficult to surmise why animal stroke experiments fail to successfully 

translate to humans even with new guidelines. Standard stroke medications will likely affect 

different species differently. There is little evidence to suggest that a female rat, dog, or monkey 

sufficiently reproduces the physiology of a human female. Perhaps most importantly, reproducing 

the preexisting conditions of stroke in animals proves just as difficult as reproducing stroke 

pathology and outcomes. For example, most animals don’t naturally develop significant 

atherosclerosis, a leading contributor to ischemic stroke. In order to reproduce the effects of 

atherosclerosis in animals, researchers clamp their blood vessels or artificially insert blood clots. 

These interventions, however, do not replicate the elaborate pathology of atherosclerosis and its 

underlying causes. Reproducing human diseases in animals requires reproducing the predisposing 

diseases, also a formidable challenge. The inability to reproduce the disease in animals so that it is 

congruent in relevant respects with human stroke has contributed to a high failure rate in drug 

development. More than 114 potential therapies initially tested in animals failed in human trials.26 

Further examples of repeated failures based on animal models include drug development in cancer, 

amyotrophic lateral sclerosis (ALS), traumatic brain injury (TBI), Alzheimer’s disease (AD), and 

inflammatory conditions. Animal cancer models in which tumors are artificially induced have been 

the basic translational model used to study key physiological and biochemical properties in cancer 

onset and propagation and to evaluate novel treatments. Nevertheless, significant limitations exist 

in the models’ ability to faithfully mirror the complex process of human carcinogenesis.27 These 

limitations are evidenced by the high (among the highest of any disease category) clinical failure rate 

of cancer drugs.28 Analyses of common mice ALS models demonstrate significant differences from 

human ALS.29 The inability of animal ALS models to predict beneficial effects in humans with ALS is 

recognized.30 More than twenty drugs have failed in clinical trials, and the only U.S. Food and Drug 

Administration (FDA)–approved drug to treat ALS is Riluzole, which shows notably marginal benefit 

on patient survival.31 Animal models have also been unable to reproduce the complexities of human 

TBI.32 In 2010, Maas et al. reported on 27 large Phase 3 clinical trials and 6 unpublished trials in TBI 
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that all failed to show human benefit after showing benefit in animals.33 Additionally, even after 

success in animals, around 172 and 150 drug development failures have been identified in the 

treatment of human AD34 and inflammatory diseases,35 respectively. 

The high clinical failure rate in drug development across all disease categories is based, at least in 

part, on the inability to adequately model human diseases in animals and the poor predictability of 

animal models.36 A notable systematic review, published in 2007, compared animal 

experimentation results with clinical trial findings across interventions aimed at the treatment of 

head injury, respiratory distress syndrome, osteoporosis, stroke, and hemorrhage.37 The study 

found that the human and animal results were in accordance only half of the time. In other words, 

the animal experiments were no more likely than a flip of the coin to predict whether those 

interventions would benefit humans. 

In 2004, the FDA estimated that 92 percent of drugs that pass preclinical tests, including “pivotal” 

animal tests, fail to proceed to the market.38 More recent analysis suggests that, despite efforts to 

improve the predictability of animal testing, the failure rate has actually increased and is now closer 

to 96 percent.39 The main causes of failure are lack of effectiveness and safety problems that were 

not predicted by animal tests.40 

Usually, when an animal model is found wanting, various reasons are proffered to explain what went 

wrong—poor methodology, publication bias, lack of preexisting disease and medications, wrong 

gender or age, and so on. These factors certainly require consideration, and recognition of each 

potential difference between the animal model and the human disease motivates renewed efforts to 

eliminate these differences. As a result, scientific progress is sometimes made by such efforts. 

However, the high failure rate in drug testing and development, despite attempts to improve animal 

testing, suggests that these efforts remain insufficient to overcome the obstacles to successful 

translation that are inherent to the use of animals. Too often ignored is the well-substantiated idea 

that these models are, for reasons summarized here, intrinsically lacking in relevance to, and thus 

highly unlikely to yield useful information about, human diseases.41 

 

Interspecies Differences in Physiology and Genetics 

Ultimately, even if considerable congruence were shown between an animal model and its 

corresponding human disease, interspecies differences in physiology, behavior, pharmacokinetics, 

and genetics would significantly limit the reliability of animal studies, even after a substantial 

investment to improve such studies. In spinal cord injury, for example, drug testing results vary 

according to which species and even which strain within a species is used, because of numerous 

interspecies and interstrain differences in neurophysiology, anatomy, and behavior.42 The 

micropathology of spinal cord injury, injury repair mechanisms, and recovery from injury varies 

greatly among different strains of rats and mice. A systematic review found that even among the 

most standardized and methodologically superior animal experiments, testing results assessing the 

effectiveness of methylprednisolone for spinal cord injury treatment varied considerably among 

species.43 This suggests that factors inherent to the use of animals account for some of the major 

differences in results. 

Even rats from the same strain but purchased from different suppliers produce different test 

results.44 In one study, responses to 12 different behavioral measures of pain sensitivity, which are 

important markers of spinal cord injury, varied among 11 strains of mice, with no clear-cut patterns 

that allowed prediction of how each strain would respond.45 These differences influenced how the 
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animals responded to the injury and to experimental therapies. A drug might be shown to help one 

strain of mice recover but not another. Despite decades of using animal models, not a single 

neuroprotective agent that ameliorated spinal cord injury in animal tests has proven efficacious in 

clinical trials to date.46 

Further exemplifying the importance of physiological differences among species, a 2013 study 

reported that the mouse models used extensively to study human inflammatory diseases (in sepsis, 

burns, infection, and trauma) have been misleading. The study found that mice differ greatly from 

humans in their responses to inflammatory conditions. Mice differed from humans in what genes 

were turned on and off and in the timing and duration of gene expression. The mouse models even 

differed from one another in their responses. The investigators concluded that “our study supports 

higher priority to focus on the more complex human conditions rather than relying on mouse 

models to study human inflammatory disease.”47 The different genetic responses between mice 

and humans are likely responsible, at least in part, for the high drug failure rate. The authors stated 

that every one of almost 150 clinical trials that tested candidate agents’ ability to block inflammatory 

responses in critically ill patients failed. 

Wide differences have also become apparent in the regulation of the same genes, a point that is 

readily seen when observing differences between human and mouse livers.48 Consistent 

phenotypes (observable physical or biochemical characteristics) are rarely obtained by modification 

of the same gene, even among different strains of mice.49 Gene regulation can substantially differ 

among species and may be as important as the presence or absence of a specific gene. Despite the 

high degree of genome conservation, there are critical differences in the order and function of genes 

among species. To use an analogy: as pianos have the same keys, humans and other animals share 

(largely) the same genes. Where we mostly differ is in the way the genes or keys are expressed. For 

example, if we play the keys in a certain order, we hear Chopin; in a different order, we hear Ray 

Charles; and in yet a different order, it’s Jerry Lee Lewis. In other words, the same keys or genes are 

expressed, but their different orders result in markedly different outcomes. 

Recognizing the inherent genetic differences among species as a barrier to translation, researches 

have expressed considerable enthusiasm for genetically modified (GM) animals, including transgenic 

mice models, wherein human genes are inserted into the mouse genome. However, if a human gene 

is expressed in mice, it will likely function differently from the way it functions in humans, being 

affected by physiological mechanisms that are unique in mice. For example, a crucial protein that 

controls blood sugar in humans is missing in mice.50 When the human gene that makes this protein 

was expressed in genetically altered mice, it had the opposite effect from that in humans: it caused 

loss of blood sugar control in mice. Use of GM mice has failed to successfully model human diseases 

and to translate into clinical benefit across many disease categories.51 Perhaps the primary reason 

why GM animals are unlikely to be much more successful than other animal models in translational 

medicine is the fact that the “humanized” or altered genes are still in nonhuman animals. 

In many instances, nonhuman primates (NHPs) are used instead of mice or other animals, with the 

expectation that NHPs will better mimic human results. However, there have been sufficient failures 

in translation to undermine this optimism. For example, NHP models have failed to reproduce key 

features of Parkinson’s disease, both in function and in pathology.52 Several therapies that 

appeared promising in both NHPs and rat models of Parkinson’s disease showed disappointing 

results in humans.53 The campaign to prescribe hormone replacement therapy (HRT) in millions of 

women to prevent cardiovascular disease was based in large part on experiments on NHPs. HRT is 

now known to increase the risk of these diseases in women.54 
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HIV/AIDS vaccine research using NHPs represents one of the most notable failures in animal 

experimentation translation. Immense resources and decades of time have been devoted to creating 

NHP (including chimpanzee) models of HIV. Yet all of about 90 HIV vaccines that succeeded in 

animals failed in humans.55 After HIV vaccine gp120 failed in clinical trials, despite positive 

outcomes in chimpanzees, a BMJ article commented that important differences between NHPs and 

humans with HIV misled researchers, taking them down unproductive experimental paths.56 Gp120 

failed to neutralize HIV grown and tested in cell culture. However, because the serum protected 

chimpanzees from HIV infection, two Phase 3 clinical trials were undertaken57—a clear example of 

how expectations that NHP data are more predictive than data from other (in this case, cell culture) 

testing methods are unproductive and harmful. Despite the repeated failures, NHPs (though not 

chimpanzees or other great apes) remain widely used for HIV research. 

The implicit assumption that NHP (and indeed any animal) data are reliable has also led to significant 

and unjustifiable human suffering. For example, clinical trial volunteers for gp120 were placed at 

unnecessary risk of harm because of unfounded confidence in NHP experiments. Two landmark 

studies involving thousands of menopausal women being treated with HRT were terminated early 

because of increased stroke and breast cancer risk.58 In 2003, Elan Pharmaceuticals was forced to 

prematurely terminate a Phase 2 clinical trial when an investigational AD vaccine was found to cause 

brain swelling in human subjects. No significant adverse effects were detected in GM mice or 

NHPs.59 

In another example of human suffering resulting from animal experimentation, six human volunteers 

were injected with an immunomodulatory drug, TGN 1412, in 2006.60 Within minutes of receiving 

the experimental drug, all volunteers suffered a severe adverse reaction resulting from a life-

threatening cytokine storm that led to catastrophic systemic organ failure. The compound was 

designed to dampen the immune system, but it had the opposite effect in humans. Prior to this first 

human trial, TGN 1412 was tested in mice, rabbits, rats, and NHPs with no ill effects. NHPs also 

underwent repeat-dose toxicity studies and were given 500 times the human dose for at least four 

consecutive weeks.61 None of the NHPs manifested the ill effects that humans showed almost 

immediately after receiving minute amounts of the test drug. Cynomolgus and rhesus monkeys were 

specifically chosen because their CD28 receptors demonstrated similar affinity to TGN 1412 as 

human CD28 receptors. Based on such data as these, it was confidently concluded that results 

obtained from these NHPs would most reliably predict drug responses in humans—a conclusion that 

proved devastatingly wrong. 

As exemplified by the study of HIV/AIDS, TGN 1412, and other experiences,62 experiments with 

NHPs are not necessarily any more predictive of human responses than experiments with other 

animals. The repeated failures in translation from studies with NHPs belie arguments favoring use of 

any nonhuman species to study human physiology and diseases and to test potential treatments. If 

experimentation using chimpanzees and other NHPs, our closest genetic cousins, are unreliable, how 

can we expect research using other animals to be reliable? The bottom line is that animal 

experiments, no matter the species used or the type of disease research undertaken, are highly 

unreliable—and they have too little predictive value to justify the resultant risks of harms for 

humans, for reasons I now explain. 

The Collective Harms That Result from Misleading Animal Experiments 
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As medical research has explored the complexities and subtle nuances of biological systems, 

problems have arisen because the differences among species along these subtler biological 

dimensions far outweigh the similarities, as a growing body of evidence attests. These profoundly 

important—and often undetected—differences are likely one of the main reasons human clinical 

trials fail.63 

“Appreciation of differences” and “caution” about extrapolating results from animals to humans are 

now almost universally recommended. But, in practice, how does one take into account differences 

in drug metabolism, genetics, expression of diseases, anatomy, influences of laboratory 

environments, and species- and strain-specific physiologic mechanisms—and, in view of these 

differences, discern what is applicable to humans and what is not? If we cannot determine which 

physiological mechanisms in which species and strains of species are applicable to humans (even 

setting aside the complicating factors of different caging systems and types of flooring), the 

usefulness of the experiments must be questioned. 

It has been argued that some information obtained from animal experiments is better than no 

information.64 This thesis neglects how misleading information can be worse than no information 

from animal tests. The use of nonpredictive animal experiments can cause human suffering in at 

least two ways: (1) by producing misleading safety and efficacy data and (2) by causing potential 

abandonment of useful medical treatments and misdirecting resources away from more effective 

testing methods. 

Humans are harmed because of misleading animal testing results. Imprecise results from animal 

experiments may result in clinical trials of biologically faulty or even harmful substances, thereby 

exposing patients to unnecessary risk and wasting scarce research resources.65 Animal toxicity 

studies are poor predictors of toxic effects of drugs in humans.66 As seen in some of the preceding 

examples (in particular, stroke, HRT, and TGN1412), humans have been significantly harmed because 

investigators were misled by the safety and efficacy profile of a new drug based on animal 

experiments.67 Clinical trial volunteers are thus provided with raised hopes and a false sense of 

security because of a misguided confidence in efficacy and safety testing using animals. 

An equal if indirect source of human suffering is the opportunity cost of abandoning promising drugs 

because of misleading animal tests.68 As candidate drugs generally proceed down the development 

pipeline and to human testing based largely on successful results in animals69 (i.e., positive efficacy 

and negative adverse effects), drugs are sometimes not further developed due to unsuccessful 

results in animals (i.e., negative efficacy and/or positive adverse effects). Because much 

pharmaceutical company preclinical data are proprietary and thus publicly unavailable, it is difficult 

to know the number of missed opportunities due to misleading animal experiments. However, of 

every 5,000–10,000 potential drugs investigated, only about 5 proceed to Phase 1 clinical trials.70 

Potential therapeutics may be abandoned because of results in animal tests that do not apply to 

humans.71 Treatments that fail to work or show some adverse effect in animals because of species-

specific influences may be abandoned in preclinical testing even if they may have proved effective 

and safe in humans if allowed to continue through the drug development pipeline. 

An editorial in Nature Reviews Drug Discovery describes cases involving two drugs in which animal 

test results from species-specific influences could have derailed their development. In particular, it 

describes how tamoxifen, one of the most effective drugs for certain types of breast cancer, “would 

most certainly have been withdrawn from the pipeline” if its propensity to cause liver tumor in rats 

had been discovered in preclinical testing rather than after the drug had been on the market for 

years.72 Gleevec provides another example of effective drugs that could have been abandoned 
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based on misleading animal tests: this drug, which is used to treat chronic myelogenous leukemia 

(CML), showed serious adverse effects in at least five species tested, including severe liver damage in 

dogs. However, liver toxicity was not detected in human cell assays, and clinical trials proceeded, 

which confirmed the absence of significant liver toxicity in humans.73 Fortunately for CML patients, 

Gleevec is a success story of predictive human-based testing. Many useful drugs that have safely 

been used by humans for decades, such as aspirin and penicillin, may not have been available today 

if the current animal testing regulatory requirements were in practice during their development.74 

A further example of near-missed opportunities is provided by experiments on animals that delayed 

the acceptance of cyclosporine, a drug widely and successfully used to treat autoimmune disorders 

and prevent organ transplant rejection.75 Its immunosuppressive effects differed so markedly 

among species that researchers judged that the animal results limited any direct inferences that 

could be made to humans. Providing further examples, PharmaInformatic released a report 

describing how several blockbuster drugs, including aripiprazole (Abilify) and esomeprazole 

(Nexium), showed low oral bioavailability in animals. They would likely not be available on the 

market today if animal tests were solely relied on. Understanding the implications of its findings for 

drug development in general, PharmaInformatic asked, “Which other blockbuster drugs would be on 

the market today, if animal trials would have not been used to preselect compounds and drug-

candidates for further development?”76 These near-missed opportunities and the overall 96 percent 

failure rate in clinical drug testing strongly suggest the unsoundness of animal testing as a 

precondition of human clinical trials and provide powerful evidence for the need for a new, human-

based paradigm in medical research and drug development. 

In addition to potentially causing abandonment of useful treatments, use of an invalid animal 

disease model can lead researchers and the industry in the wrong research direction, wasting time 

and significant investment.77 Repeatedly, researchers have been lured down the wrong line of 

investigation because of information gleaned from animal experiments that later proved to be 

inaccurate, irrelevant, or discordant with human biology. Some claim that we do not know which 

benefits animal experiments, particularly in basic research, may provide down the road. Yet human 

lives remain in the balance, waiting for effective therapies. Funding must be strategically invested in 

the research areas that offer the most promise. 

The opportunity costs of continuing to fund unreliable animal tests may impede development of 

more accurate testing methods. Human organs grown in the lab, human organs on a chip, cognitive 

computing technologies, 3D printing of human living tissues, and the Human Toxome Project are 

examples of new human-based technologies that are garnering widespread enthusiasm. The benefit 

of using these testing methods in the preclinical setting over animal experiments is that they are 

based on human biology. Thus their use eliminates much of the guesswork required when 

attempting to extrapolate physiological data from other species to humans. Additionally, these tests 

offer whole-systems biology, in contrast to traditional in vitro techniques. Although they are gaining 

momentum, these human-based tests are still in their relative infancy, and funding must be 

prioritized for their further development. The recent advancements made in the development of 

more predictive, human-based systems and biological approaches in chemical toxicological testing 

are an example of how newer and improved tests have been developed because of a shift in 

prioritization.78 Apart from toxicology, though, financial investment in the development of human-

based technologies generally falls far short of investment in animal experimentation.79 
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Conclusion 

The unreliability of applying animal experimental results to human biology and diseases is 

increasingly recognized. Animals are in many respects biologically and psychologically similar to 

humans, perhaps most notably in the shared characteristics of pain, fear, and suffering.80 In 

contrast, evidence demonstrates that critically important physiological and genetic differences 

between humans and other animals can invalidate the use of animals to study human diseases, 

treatments, pharmaceuticals, and the like. In significant measure, animal models specifically, and 

animal experimentation generally, are inadequate bases for predicting clinical outcomes in human 

beings in the great bulk of biomedical science. As a result, humans can be subject to significant and 

avoidable harm. 

The data showing the unreliability of animal experimentation and the resultant harms to humans 

(and nonhumans) undermine long-standing claims that animal experimentation is necessary to 

enhance human health and therefore ethically justified. Rather, they demonstrate that animal 

experimentation poses significant costs and harms to human beings. It is possible—as I have argued 

elsewhere—that animal research is more costly and harmful, on the whole, than it is beneficial to 

human health.81 When considering the ethical justifiability of animal experiments, we should ask if 

it is ethically acceptable to deprive humans of resources, opportunity, hope, and even their lives by 

seeking answers in what may be the wrong place. In my view, it would be better to direct resources 

away from animal experimentation and into developing more accurate, human-based technologies. 
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