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Background: Coronavirus disease 2019 (COVID-19) outbreaks in acute care settings can
have severe consequences for patients due to their underlying vulnerabilities, and can be
costly due to additional patient bed-days and the need to replace isolating staff. This
study assessed the cost-effectiveness of clinical staff N95 respirators and admission
screening testing of patients to reduce COVID-19 hospital-acquired infections.
Methods: An agent-based model was calibrated to data on 178 outbreaks in acute care
settings in Victoria, Australia between October 2021 and July 2023. Outbreaks were
simulated under different combinations of staff masking (surgical, N95) and patient
admission screening testing [none, rapid antigen test (RAT), polymerase chain reaction]. For
each scenario, average diagnoses, COVID-19 deaths, quality-adjusted life years from dis-
charged patients, and costs (masks, testing, patient COVID-19 bed-days, staff replacement
costs while isolating) from acute COVID-19 were estimated over a 12-month period.
Findings: Compared with no admission screening testing and staff surgical masks, all
scenarios were cost saving with health gains. Staff N95 respirators + RAT admission
screening of patients was the cheapest scenario, saving A$78.4M [95% uncertainty interval
(Ul) 44.4M—135.3M] and preventing 1543 (95% Ul 1070—2146) deaths state-wide per
annum. Both interventions were individually beneficial: staff N95 respirators saved
A$54.7M and 854 deaths state-wide per annum, while RAT admission screening of patients
saved A$57.6M and 1176 deaths state-wide per annum.
Interpretation: In acute care settings, staff N95 respirators and admission screening
testing of patients can reduce hospital-acquired COVID-19 and COVID-19 deaths, and are
cost saving because of reduced patient bed-days and staff replacement needs.
© 2024 The Authors. Published by Elsevier Ltd
on behalf of The Healthcare Infection Society. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction

The prevention and reduction of healthcare-associated
infections is a major priority in Australia and globally due to
the increased vulnerability of patients [1]. Hospital-acquired
coronavirus disease 2019 (COVID-19) occurs when patients
admitted for non-COVID-19 reasons acquire COVID-19 following
exposure to staff, other patients or visitors, and infection pre-
vention and control measures are insufficient to prevent
transmission. As well as being a patient safety risk, hospital-
acquired infections carry significant costs to the health system
[2—4]. Hospital-acquired COVID-19 first emerged as an issue in
Australia in 2020 among healthcare workers, then among
patients from the end of 2021 as community transmission was
widespread [5]. In the state of Victoria, 15—25% of patients in
hospital with COVID-19 between June 2022 and June 2023
acquired their infection after admission, with 90-day mortality
of 18.9% compared with 12.3% among matched patients who did
not acquire COVID-19 post admission (see online Supplementary
material). This compares with similar numbers globally, with
2021 estimates suggesting that 11.3% of hospitalized COVID-19
patients in the UK acquired COVID-19 whilst in hospital [6],
11.8% in Germany [7], and 9.2% in Brazil [8].

Within acute care facilities, patients who acquire COVID-19
following admission require isolation and transmission-based
precautions to limit onward transmission, and may require
longer hospital stays than if they had not acquired COVID-19
[9—11]. Healthcare workers who are diagnosed with COVID-19
require time off work to isolate and recover, which has costs
associated with sick leave and replacement staff. Particularly
during periods of high COVID-19 community transmission,
hospital-acquired infections can compound health system
performance challenges through additional hospital demand
and staff absence [12,13]. In addition to these impacts from
acute infection, it is well established that COVID-19 causes
chronic or longer-term impacts, known as ‘long COVID’ or post-
acute sequelae, which are more pronounced in people admit-
ted for COVID-19 [14,15].

During the emergency phase of the pandemic (2020—2023),
multi-layered infection prevention and control interventions
were applied in acute care settings to protect staff and
patients from contracting COVID-19, and to prevent outbreaks
[16]. These measures, outside of outbreak management pro-
tocols, included routine COVID-19 screening testing of staff,
visitors and patients; staff vaccine mandates; staff and visitor
mask requirements; strengthened ventilation, air flow and air
filtration; grouping of suspected COVID-19 cases; isolation
areas and wards for confirmed cases; and limiting visitor
capacity [11,17]. As Australian government emergency pan-
demic orders and directions ended in 2023 and jurisdictions
reverted to COVID-19 infection control and prevention guid-
ance, there was variability between the application of inter-
ventions [18]. Over 2023, many acute care settings ceased
testing patients on admission, and shifted from use of N95
respirators to surgical masks by staff, while some settings have
adapted more dynamic approaches of increasing/decreasing
intervention layers based on community prevalence and,
hence, risk of incursion [19,20].

As COVID-19 continues to cause epidemic transmission and
impacts, understanding the cost-effectiveness of interventions
to prevent COVID-19 transmission in acute care settings is

crucial for informing ongoing changes to policy and practice.
However, while other studies have used agent-based epi-
demiological models to simulate COVID-19 outbreaks in hospi-
tals and acute care facilities [21—23], none, to the authors’
knowledge, have used these outputs to estimate the cost-
effectiveness of interventions. This study aimed to estimate
the cost-effectiveness of staff N95 respirators and admission
screening testing of patients in acute care settings. The model
uses data on outbreaks in acute care settings from the state of
Victoria, Australia, but would have implications for other set-
tings given the widespread nature of hospital-acquired
infections.

Methods
Data

Data on outbreaks occurring in Victorian acute care settings
were aggregated from multiple sources, consisting of the out-
break size (number of patient and staff diagnoses), outbreak
duration, and the corresponding demographic composition of
each setting that recorded an outbreak (number of admissions,
age distribution of admissions, distribution of length of stay,
staff:patient ratio). The Victorian Nosocomial Infection Sur-
veillance System was used to collect all data for this study [17].

The Victorian Department of Health maintained a hospital
minimum dataset collated from hospitals across the state, and
included data from 50 outbreaks in acute care settings from
August 2021 to April 2022. Each of the outbreaks contained
complete information about number of patient diagnoses,
outbreak duration and demographic composition; however,
approximately 75% of outbreaks recorded zero staff diagnoses.
The dataset, while detailed, is thought not to contain all out-
breaks in that period. Following consultation with hospital
staff, the dataset was thought to be unreliable for staff out-
comes as systematic staff screening was not widely imple-
mented in 2022, and community diagnoses were not recorded
by hospitals. Alternate data were sought to inform the out-
break size distribution among staff.

Additional acute care outbreak data not included in the
hospital minimum dataset were obtained by the Department of
Health from Hospital A (metropolitan private healthcare
facility; 98 outbreaks between March 2022 and June 2023),
Network A (containing a regional healthcare facility; six out-
breaks between November 2022 and April 2023) and Hospital B
(metropolitan tertiary healthcare facility; 24 outbreaks
between November 2022 and May 2023). Only data relating to
the Omicron period was considered, and all additional out-
break data included information on patient diagnoses and
demographic composition of each setting. All except Hospital A
included outbreak duration, and Hospital A was the only facility
to include staff diagnoses.

Among all datasets, a combined total of 178 outbreaks was
available from the Omicron circulation period.

Model overview

An established agent-based model, Covasim [24], was used
to simulate outbreaks in acute care settings under different
intervention scenarios. The model is available online [25], and
has been used previously to model epidemic waves and
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response strategies in Australia [26—29]. For this analysis, a
detailed acute care setting component was constructed, based
on previous work simulating outbreaks in schools [30] and aged
care settings [31].

Acute care wards are highly heterogeneous in terms of the
health facility characteristics, the patient population, the
ward built environment and staff characteristics. They may
include short stay units, general wards (medicine, surgery) and
speciality wards (cancer, maternity, paediatric) for example,
and are located in rural or metropolitan areas. For the purposes
of this study, these represent locations where patients are
admitted (with some underlying health conditions or vulner-
ability), often for overnight stays, who, throughout their stay,
would have interactions with healthcare workers, receive vis-
itors, and may be in close proximity to other patients.

Data sparsity did not allow for meaningful disaggregation of
outcomes by ward type, so the unit of analysis for this study is
an ‘average’ acute care ward in Victoria, Australia. These
average wards were simulated by sampling over different acute
care ward characteristics, such that outcomes relate to an
average acute care ward. As aresult, certain outlier ward types
were excluded from analysis, specifically dialysis units (as their
high number of admissions and short length of stay likely results
in an overestimate of bed places within the unit) and dementia
wards (as they had an average age of >80 years, and age is
likely a confounder but data are not available to reflect accu-
rately), and so the results may not apply to these settings. The
wards that have been excluded can be seen in Appendix A,
Figure S2 (see online supplementary material).

Each acute care setting was modelled to have patients and
staff, with characteristics parametrized by settings in the
hospital minimum dataset. A normal distribution was fit to

patient numbers per setting to use as a model input (estimated
in the data for each setting by dividing total patient admissions
by median length of stay), which had a mean of 28 patients per
setting and standard deviation of 14. The central 95 percen-
tile for patient age was 45—75 years. Number of staff per set-
ting was calculated based on staff:patient ratio, which was
most commonly 1:3. In the model, staff were selected from the
general population aged 18—65 years. Further details are
available in Appendix A (see online supplementary material).

Outbreak simulations

Within acute care settings, three types of interactions were
modelled: patient—patient, staff—staff and staff—patient
(Figure 1). Visitors were not modelled explicitly, but would
have been the origin of some of the incursions among patients
in the model.

The model generates a single acute care setting at random
(i.e. sampling patient numbers from the setting size dis-
tribution, staff numbers from the staff:patient ratio, and
generating a facility with those characteristics), and then
simulates a single incursion by infecting a patient or staff
member at random. Data on the source of incursion were
available in the Hospital A dataset and used to inform the
simulations, with 74% of outbreaks having index cases reported
as staff and 26% as patients (unknown or visitor were
excluded).

Following an incursion, transmission can occur between
contacts, and symptomatic testing (staff and patients) is
required to detect the first case. Once a case is identified, the
whole setting is tested once by polymerase chain reaction
(PCR), and all positive cases are assumed to isolate. On
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Figure 1. Model schematic displaying the incursion source and three types of mixing in acute care facilities. RAT, rapid antigen test; PCR,

polymerase chain reaction; COVID-19, coronavirus disease 2019.
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detection of the first case, setting-wide risk mitigations are
introduced in the model that reduce the risk of transmission by
66% (calibrated to fit outbreak duration data).

Within the model, both patients and staff have a probability
of testing if symptomatic of 60% per week, and staff have a
probability of testing if asymptomatic of 10% per week, which
were both chosen as reasonable estimates. Testing of patients
is assumed to be done using PCR and testing of staff using rapid
antigen tests (RATSs).

At the end of each simulation, the total number of infections
and diagnoses are recorded for patients and staff, as well as the
duration of the outbreak. Patient COVID-19 deaths per outbreak
were estimated by multiplying diagnoses by the average
observed case fatality rate for hospital-acquired infections in
Victoria (Appendix A, see online supplementary material).

Interventions

The model includes options for staff mask wearing (N95 or
surgical) and admission screening testing of patients (PCR or
RATs; with PCR being more sensitive but taking 24 h to return
results). PCR testing has sensitivity of 87% [32] and RATs have
sensitivity of 77.3% [32,33].

The scenario used for calibration assumes that admission
screening testing of patients occurs, and staff wear N95 res-
pirators, reflecting the typical health service policies in place
in Victorian health services at the time the outbreak data were
recorded. As admission and discharge of patients from an acute
care facility were not modelled explicitly, admission screening
testing of patients was approximated by testing agents on
average twice per week, in line with an average length of stay
of 4.1 days from the hospital minimum dataset.

The effectiveness of surgical masks compared with N95
respirators was taken from a cohort study by Dorr et al. [34]
{odds ratio (OR) 0.56 [95% confidence interval (Cl) 0.43—0.74]3.
The impact of no masks compared with N95 respirators was
taken from a study by Kim et al. [35] [OR 0.29 (95% CI
0.19—0.44)]. Both studies supplied ORs per interaction, and are
applied to staff—patient interactions in the model, with
staff—staff interactions assuming bidirectional impact.

Model calibration

The model was calibrated to fit the distribution of staff and
patient infections per outbreak, as well as outbreak duration
(Figure 2 and Appendix C, see online supplementary material).
Staff outbreak size distribution was calibrated to Hospital A
data; patient outbreak size distribution was calibrated to the
pooled hospital minimum dataset, and Hospital A, Network A
and Hospital B datasets (total combined dataset); and outbreak
duration was calibrated to the total combined dataset
excluding Hospital A data, as Hospital A data did not include
total length of outbreaks.

Calibration was achieved by varying the relative risk of
transmission per contact, the mean number of contacts
between staff and patients, and the risk reduction on detection
of the first case. The probability of an incursion occurring in
staff vs patients was increased slightly to 85% so that the model
could reproduce the large number of outbreaks with zero
patient infections. Parameters were chosen so that, over 1000
simulations, the model aligned with the data while still being
realistic (i.e. staff having more contacts than patients).

The model was calibrated assuming intervention and policy
conditions [e.g. vaccine coverage and exposure immunity
(Appendix A, see online supplementary material)] as per Jan-
uary 2022, because this represents the largest number of out-
breaks in the data.

Scenarios: average acute care outcomes per 100
incursions

First, an incursion-outcome library was established to
record the distribution of outcomes per 100 incursions under
different interventions. All combinations of the following sce-
narios were run:

— mask usage: N95, surgical (baseline), ‘dynamic’ masks.

— admission screening testing: patients on admission with
PCR, patients on admission with RATs, none (baseline),
‘dynamic’ testing

Dynamic strategies were defined as being in place only
during periods of high community prevalence [see Appendix D
(online supplementary material) for definition], which was
estimated to be 63.4% of the time in Victoria between June
2022 and June 2023. These periods of high community trans-
mission accounted for 77% of diagnoses in acute care (Appendix
B, see online supplementary material). Hence the dynamic
scenarios assumed the intervention costs for 63.4% of the time,
but intervention benefits for 77% of simulated incursions.

Scenarios: average outcomes per scenario per acute
care setting over a 12-month period

The incursion-outcome libraries were combined with other
data on hospital-acquired infections to estimate expected
state-wide outcomes over a 12-month period.

The total number of incursions in acute care settings per
annum was estimated by taking the total patient hospital-
acquired infections in Victoria from January 2022 to June
2023 (N=6023), annualizing (N=4853; Appendix B, see online
supplementary material) and dividing by the average number
of diagnoses per outbreak from the model calibration (N=2;
Appendix C, see online supplementary material).

For scenarios with RATs or no admission screening testing of
patients, additional incursions were modelled compared with
the data, as fewer infections would be detected and diverted
on admission. The average additional incursions in acute care
settings per annum were estimated as the total detections
through the screening programme (June 2022—June 2023).

For each scenario, total patient diagnoses, staff diagnoses
and patient COVID-19 deaths per acute care setting per 12
months, as well as differences to the baseline (surgical masks
and no admission screening testing), were calculated. Median
and 95% uncertainty intervals (Ul) for each scenario (defined as
the 2.5'" and 97.5" quantiles), and differences between sce-
narios, were estimated by repeating this sampling process.

Health outcomes

Gains in total quality-adjusted life years (QALYs) among
acute care patients were calculated for each scenario com-
pared with no patient admission screening and staff surgical
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Figure 2. Model calibration. (a) Outbreak size calibration: (left) distribution of total, staff and patient outbreak sizes from Victorian
acute care data; (right) distribution of model estimates of total, staff and patient outbreak sizes. (b) Outbreak duration distribution:
(left) distribution of outbreak duration from Victorian acute care data; (right) distribution of model estimates of outbreak duration.

masks. QALY gains were based on state-wide reductions in
COVID-19 deaths throughout the simulated 12-month inter-
vention period. Reduced health utility during acute COVID-19
and post COVID-19 conditions, such as long COVID, were not
included in this study, meaning these are highly conservative
estimates for QALYs gained from interventions. A lifetime time
horizon was used for QALY gains, with future gains discounted
at 5% per annum. COVID-19 case fatality rates among acute
care patients were estimated from hospital data during the

Omicron period, which also accounted for high vaccine cover-
age. The QALYs gained from a COVID-19 death averted varied
depending on the age of patients in the simulated acute care
setting, and were based on the average remaining life
expectancy for people of that age (Appendix A, see online
supplementary material). This was then multiplied by a
comorbidity adjustment of 55% to reflect the fact that those
presenting to acute care have, on average, lower quality of
life.
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Table |
Model cost inputs
Cost component Cost (AS) Source
N95 respirators (state-wide annual cost) 18.9M Investment and health sector budgeting
Surgical masks (state-wide annual cost) 4.9M Investment and health sector budgeting
PCR admission screening testing of patients 23.6M Victorian Admitted Episodes Dataset and commercial and
(state-wide annual cost) HealthShare Victoria estimates
RAT admission screening testing of patients 1.2M Victorian Admitted Episodes Dataset and commercial and
(state-wide annual cost) HealthShare Victoria estimates
Patient bed costs (mean cost per infection) 1595/day National Weighted Activity Unit and 2022/23 National Efficient Price
Staff (mean cost per infection) 308/day Investment and health sector budgeting

PCR, polymerase chain reaction; RAT, rapid antigen test.
Methods and details of calculations can be found in Appendix B.

Cost inputs

Total costs for each scenario were calculated in 2023 AS
from the healthcare provider perspective. Costs were only
considered over the 12-month intervention period, so no dis-
counting was applied. Costs included interventions (i.e. masks,
tests), additional patient bed-days required for hospital-
acquired COVID-19, and staff absenteeism for isolation
(Table 1).

Cost-effectiveness analysis

State-wide COVID-19 deaths, total QALYs and total costs per
annum were calculated for each scenario. The incremental
cost-effectiveness ratio (ICER; difference in costs divided by
difference in QALYs) was calculated for each scenario com-
pared with the baseline of no admission screening testing of
patients and staff surgical masks (Figure 2).

Uncertainty analysis

A multi-variate probabilistic uncertainty analysis was used
to combine uncertainty from all parameters and generate 95%
Uls for outcomes, as well as the probability that scenarios
would be cost-effective for different willingness-to-pay
thresholds. Uncertainty in COVID-19 deaths per scenario, and
difference from the baseline, were estimated by sampling the
incursion-outcome libraries repeatedly. Uncertainty ranges for
other parameters are given in Appendix C (see online supple-
mentary material).

Results

Compared with a reference of no admission screening
testing of patients and staff surgical masks, all scenarios were
cost saving with health gains over a 12-month period (Figures 3
and 4, Table Il). This is because the testing or N95 costs were
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Figure 3. Model workflow. Inputs from the acute care agent-based model (blue) use outbreak data inputs (green). The agent-based
model runs and hospital-acquired infection data are used to calculate cost-effectiveness of different interventions (orange). QALYs,
quality-adjusted life years; ICER, incremental cost-effectiveness ratio.
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Figure 4. Total costs of different scenarios. Scenarios are ordered from lowest to highest annual costs. Patient bed costs (red) are
proportional to deaths and quality-adjusted life years. RAT, rapid antigen test; PCR, polymerase chain reaction.

Table Il
Difference in costs, quality-adjusted life years (QALYs) and deaths for each scenario compared with no patient admission screening testing

and use of surgical masks by staff

Patient admission  Staff masks Difference in costs Difference in QALYs Difference in COVID-19 deaths
screening testing (intervention + bed-days + staff absence) (AS)

None Surgical Reference Reference Reference

PCR N95 -62.6M (-133.3M to -22.1M) 10,830 (6417—15,935) -1684 (-2478 to -998)
RAT N95 -78.4M (-135.3M to $-44.4M) 9,922 (6883—13,795) -1543 (-2146 to -1070)
None N95 -54.7M (-91.9M to -30.1M) 5484 (3727—7497) -854 (-1167 to -580)
PCR Surgical -49.7M (-113.3M to -7.4M) 9018 (3941—14,151) -1402 (-2201 to -613)
RAT Surgical -57.6M (-102.2M to -36.0M) 7556 (5120—10,818) -1176 (-1683 to -797)
PCR Dynamic -61.3M (-131.2M to -21.6M) 10,456 (5827—15,458) -1,626 (-2404 to -906)
RAT Dynamic -76.3M (-129.0M to -45.2M) 9361 (6479—13,048) -1456 (2030 to -1007)
None Dynamic -45.3M (-74.2M to -26.2M) 4146 (2825—5699) -645 (-887 to -439)
Dynamic RAT Dynamic -64.8M (-109.3M to -38.0M) 8074 (5604—11,224) -1256 (-1746 to -871)
Dynamic PCR Dynamic -58.6M (-113.6M to -28.0M) 9126 (6345—12,862) -1419 (-2000 to -987)

PCR, polymerase chain reaction; RAT, rapid antigen test; COVID-19, coronavirus disease 2019.
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small in comparison with the cost of additional patient bed-
days due to hospital-acquired infections.

Staff N95 respirators were cost saving with health gains
compared with surgical masks regardless of admission screen-
ing testing strategy for patients. RAT admission screening of
patients was cost saving with health gains compared with no
admission screening testing, regardless of staff masks.

With dynamic N95 respirators in place, dynamic RATs were
cost saving with health gains compared with no admission
screening testing, and full-time RATs were cost saving with
health gains compared with dynamic RATs.

RAT admission screening of patients and staff N95 respirators
was the cheapest option. From this scenario, adopting PCR
admission screening was necessary to increase impact, but it
was also more expensive (Figure 3). Outcomes following an
outbreak were similar (with the increased test sensitivity of PCR
negated by slower results), but PCR testing prevented more
incursions through detection of more asymptomatic cases on
admission. Moving from RATs to PCR had an ICER of $7449 and
$45 per QALY gained if staff were using N95 or surgical masks,
respectively, or $3710 per QALY gained if dynamic admission
screening of patients and dynamic staff N95 respirators were in
place. In the uncertainty analysis, there was a 90% chance of
PCR being cost-effective compared with RAT admission
screening at a willingness-to-pay of $43k and $27k per QALY
gained with staff N95 or surgical masks, respectively, and $9k

per QALY gained if dynamic admission screening and dynamic
staff N95 respirators were in place (Figures 5, 6, Table Ill).
PCR admission screening and staff N95 respirators shows the
most QALYs gained, with PCR admission screening and dynamic
N95 respirators having the second highest QALYs gained. RAT
admission screening and staff N95 respirators has the third
highest QALYs gained of the scenarios, but has the best cost
advantage due to the lower cost of RATs compared with PCR.

Discussion

This analysis used an agent-based model to simulate COVID-
19 outbreaks in acute care settings in Victoria to assess the
cost-effectiveness of staff N95 respirators and admission
screening testing of patients to reduce hospital-acquired
COVID-19. Compared with no admission screening testing of
patients and staff surgical masks, all combinations of inter-
ventions were cost saving with health gains over a 12-month
period. Staff N95 respirators + RAT admission screening of
patients was the cheapest option, saving an estimated $78.4M
(95% Ul 44.4M—135.3M) and preventing 1543 (95% Ul
1070—2146) deaths state-wide per annum. Staff N95
respirators + PCR admission screening of patients was the most
effective option, saving an estimated $62.6M (95% Ul
22.1M—133.3M) and preventing 1684 (95% Ul 998—2478] deaths
state-wide per annum.
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Figure 5. Cost-effectiveness plane. All scenarios were cost saving compared with no patient admission screening testing and use of
surgical masks by staff. RAT, rapid antigen test; PCR, polymerase chain reaction; QALYs, quality-adjusted life years.
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Table Ill

Difference in costs, quality-adjusted life years (QALYs) and deaths for different mask types when moving from rapid antigen test (RAT) to

polymerase chain reaction (PCR) admission screening testing

Difference
in costs (AS)

Admission Staff masks

screening testing

Difference
in QALYs

ICER (AS per
QALY gained)

90% percentile
of ICER

Difference
in deaths

Cost-effectiveness of moving from RAT to PCR admission screening, with use of N95 respirators by staff

PCR N95 13.6M 1056 —164 7449 $43k per QALY
(—6.2M (—664 (—401 (—144,385 gained
to 32.0M) to 2581) to 104) to 341,169)

RAT N95 Reference Reference Reference Reference Reference

Cost-effectiveness of moving from RAT to PCR admission screening, without use of N95 respirators by staff

PCR Surgical 6.8M 1455 —226 45 $27k per QALY
(—24.6M (—1831 (—656 (—58,043 gained
to 47.8M) to 1689) to 285) to 52,940)

RAT Surgical Reference Reference Reference Reference Reference

Cost-effectiveness of moving from dynamic RAT to dynamic PCR admission screening, with dynamic use of N95 respirators by staff

Dynamic PCR Dynamic N95 4.6M 1120 —174 3710 S9Kk per QALY
(—4.2M (675—1735) (—270 (—2985 gained
to 10.7M) to —104) to 10,911)

Dynamic RAT Dynamic N95 Reference Reference Reference Reference Reference

Incremental cost-effectiveness ratio (ICER) and 90% percentile of ICER recorded for each scenario.

This study found that either RAT or PCR screening of patients
admitted to acute care settings prevents deaths and reduces
costs. Compared with no admission screening testing, RAT
admission screening of patients was estimated to save
AS$57.6M—78.4M and 1176—1543 deaths state-wide per annum,
and PCR admission screening of patients was estimated to save
$49.7M—53.6M and 1402—1684 deaths state-wide per annum,
depending on staff masking strategy. If RAT admission screen-
ing of patients was already in place, the decision to adopt PCR
testing would increase costs slightly, but could prevent more
deaths and would have a 90% chance of being cost-effective at
a willingness-to-pay of $43k or $27k per QALY gained if staff
were wearing N95 respirators or surgical masks, respectively. It
should be noted that, in some circumstances, such as rural or
remote settings, if the availability of in-house PCR testing is
low, increased PCR turnaround times may decrease effective-
ness compared with point-of-care testing with RATSs.

Masks were adopted at the start of the pandemic, with the
World Health Organization recommending their use in health-
care settings in January 2020 [36], and given the predominant
airborne route of transmission, N95 respirators demonstrated
greater effectiveness [37,38]. This study found that staff N95
respirators in acute care settings could save $54.7M—78.4M and
854—1543 deaths state-wide per annum, depending on admis-
sion screening testing strategy. These results support recom-
mendations for maintaining N95 respirator use among staff
within acute care facilities. The effect size of N95 respirators
chosen for the model represents the most conservative rea-
sonable estimate in the literature, and a greater actual effect
would result in greater cost-effectiveness of this intervention
[39,40].

One of the reasons why staff N95 respirators and patient
admission screening testing have been removed from many
hospital protocols is the high upfront costs following the
removal of emergency pandemic funding. Second, as com-
munity pandemic interventions in Victoria were reduced in late
2022, hospitals also reduced their pandemic interventions.

Finally, there have been concerns regarding the environmental
impact of large volumes of single- or limited-use personal
protective equipment, such as masks. This creates an excess of
waste for facilities to handle, which calls for the need for
better sustainable waste management plans [41]. To consider
some of these issues, as well as the fact that mask wearing may
be a burden to staff on a full-time basis, this study also simu-
lated a dynamic approach to interventions, where they were
implemented only in times of higher community prevalence
when incursions are more likely. While this strategy was not
quite as effective as having the interventions in place con-
tinually, it was still greatly beneficial and cost saving, and
could potentially increase the utilization of interventions in
practice. Ultimately, the model scenarios suggest that the
more these interventions can be utilized practically, the more
lives and costs can be saved.

With substantially diminished community case ascertain-
ment, hospital admission screening is a cornerstone of identi-
fying periods of higher prevalence of COVID-19. Whilst Victoria
also undertakes wastewater COVID-19 surveillance, a reduction
in hospital admission screening testing that may occur in a
dynamic testing scenario may also delay the identification of
periods of higher prevalence, limiting the effectiveness of
dynamic policy interventions.

This study builds on the literature around cost-effective
interventions in acute care facilities. Other modelling studies
have looked into the cost-effectiveness of increasing bed
capacity [42,43], mechanical ventilation [44] and treatments
[45,46] in acute care settings. Previous analyses have inves-
tigated the cost-effectiveness of masks and testing at whole-
population level [47,48]; however, it remains a gap in the
acute care literature. The present findings show that targeted
testing strategies and continued mask wearing can have nota-
ble cost benefits within acute care settings. It follows that
other infection prevention and control interventions with
similar effectiveness, such as ventilation or newer biomedical
tools, could have similar benefit. Future research on the cost-
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Figure 6. Probability that the scenario is cost-effective when moving from rapid antigen test (RAT) to polymerase chain reaction (PCR)

admission screening testing for different mask types.

effectiveness of potentially sustainable strategies not requir-
ing behavioural modification, such as hospital infrastructure
and ventilation, is needed.

This work has some important limitations. The model sim-
ulates outbreaks while sampling over all sizes of acute care
settings; however, these are highly heterogeneous settings,
and outcomes should be interpreted as average state-wide
values for Victoria rather than being specific to any individual
setting. In particular, some settings may have higher risks of
infection, depending on patient age and types of comorbid-
ities, and this could influence costs and outbreak sizes. The
outbreak model is calibrated to patient and staff diagnosis
data, which has limitations as the number of hospital-acquired
infections may be a large under-representation due to incom-
plete definitions, improper application of tests, sensitivity of
tests and incomplete reporting. Future incursions into acute
care settings are likely to depend on community epidemic
waves, which are largely unknown; as such, the results are

based on a similar number per annum as was observed in 2022.
There is great uncertainty in the proportion of incursions that
come from patients (or visitors) compared with staff, and a
higher proportion of patient/visitor incursions compared with
the 15% used for this analysis (derived from Hospital A data +
calibration) would make patient admission screening testing
more cost-effective. Vaccine coverage over time within acute
care facilities has been approximated from whole-population
vaccine coverage (Appendix A); however, coverage may be
higher due to patients being considered high risk. Changes in
vaccine coverage over time (including waning immunity) is
likely to influence outcomes, with waning immunity increasing
outbreak size and the relative impact and cost-effectiveness of
interventions, and additional vaccine boosters reducing inter-
vention impacts. Antiviral drugs and treatments for COVID-19
reduce the risk of hospitalization and death, and may reduce
the risk of transmission. They were not assessed directly in the
model, and data on their use for hospital-acquired infections
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were not available [49]. Patients who acquired COVID-19 and
required an extended length of stay in acute care may expe-
rience decreased quality of life; this was not considered in this
study, meaning that this study may have underestimated the
benefits of preventing infections. Reducing COVID-19 in
patients and staff has the potential additional benefit of
reducing the risk of long COVID. The potential impacts from
masks on other airborne pathogens in acute care settings, such
as influenza and respiratory syncytial virus, was not assessed
within this study. Increased mask usage could have merit for
multiple pathogens, and should be investigated further [50].

In conclusion, in acute care settings, staff N95 respirators and
admission screening testing of patients can save lives and reduce
costs related to COVID-19 through reduced patient bed-days and
staff replacement needs. The more they can be implemented
practically, the greater the impact is likely to be. Infection pre-
vention and control measures to reduce COVID-19 transmission in
acute care settings should continue to be applied.
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