Do “Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-Analysis of Alcohol Consumption and All-Cause Mortality

TIM STOCKWELL, PH.D. a,d, JINHUI ZHAO, PH.D. a, SAPNA PANWAR, M.S. b, AUDRA ROEMER, M.SC. a, TIMOTHY NAIMI, M.D., c, & TANYA CHIKRITZHS, PH.D. b,d

aCentre for Addictions Research of BC, University of Victoria, Victoria, British Columbia, Canada
bInstitute for Scientific Analysis, San Francisco, California
cBoston University Schools of Medicine and Public Health, Boston, Massachusetts
dNational Drug Research Institute, Curtin University, Perth, WA 6845, Australia

ABSTRACT. Objective: Previous meta-analyses of cohort studies indicate a J-shaped relationship between alcohol consumption and all-cause mortality, with reduced risk for low-volume drinkers. However, low-volume drinkers may appear healthy only because the “abstainers” with whom they are compared are biased toward ill health. The purpose of this study was to determine whether misclassifying former and occasional drinkers as abstainers and other potentially confounding study characteristics underlie observed positive health outcomes for low-volume drinkers in prospective studies of all-cause mortality. Method: A systematic review and meta-regression analysis of studies investigating alcohol use and mortality risk after controlling for quality-related study characteristics was conducted in a population of 3,998,626 individuals, among whom 367,103 deaths were recorded. Results: Without adjustment, meta-analysis of all 87 included studies replicated the classic J-shaped curve, with low-volume drinkers (1.3–24.9 g ethanol per day) having reduced mortality risk (RR = 0.86, 95% CI [0.83, 0.90]). Occasional drinkers (<1.3 g per day) had similar mortality risk (RR = 0.84, 95% CI [0.79, 0.89]), and former drinkers had elevated risk (RR = 1.22, 95% CI [1.14, 1.31]). Adjusting for abstainer biases and quality-related study characteristics, no significant reduction in mortality risk was observed for low-volume alcohol drinkers (RR = 0.97, 95% CI [0.88, 1.07]). Analyses of higher-quality bias-free studies also failed to find reduced mortality risk for low-volume alcohol drinkers. Risk estimates for occasional drinkers were similar to those for low- and medium-volume drinkers. Conclusions: Estimates of mortality risk from alcohol are significantly altered by study design and characteristics. Meta-analyses adjusting for these factors find that low-volume alcohol consumption has no net mortality benefit compared with lifetime abstinence or occasional drinking. These findings have implications for public policy, the formulation of low-risk drinking guidelines, and future research on alcohol and health. (J. Stud. Alcohol Drugs, 77, 185–198, 2016)

There has been increasing discussion within the field of alcohol epidemiology regarding the scientific status of claimed health benefits from the consumption of alcohol in relatively low doses (Chikritzhs et al., 2015; Holmes et al., 2014). The status of the hypothesis that alcohol in moderation confers health benefits has implications for estimations of the global burden of disease from alcohol (Lim et al., 2012) and the development of public health policies to reduce alcohol’s harm (Babor et al., 2010) and national guidelines for low-risk alcohol use (Stockwell & Room, 2012).

It has been suggested that the epidemiological (Ronksley et al., 2011) and physiological evidence (Brien et al., 2011) for both an association and a causal mechanism is sufficiently compelling to recommend consideration of advising abstainers to drink. However, an increasing number of questions have been raised about the quality of the studies contained in these meta-analyses. We first summarize some reasons for skepticism and then present new meta-analyses that explore the extent to which alternative study designs enhance or minimize associations indicative of health benefits.

Theoretical and empirical background

Evidence of health benefits from alcohol use has been reported for implausible types and numbers of health conditions in observational longitudinal studies. Fekjaer (2013) identified a long list of such conditions (including deafness, hip fractures, the common cold, cancers, birth complications, dementia, and liver cirrhosis) in which the classic J-shape curve was observed, with lower risk for low-volume drinkers compared with abstainers. In some cases—notably a reduced likelihood of alcoholic liver cirrhosis among low-volume drinkers (Rehm et al., 2010) and of developmental disorders of infants born of low-volume drinking mothers (Kelly et al., 2009)—a causal basis for such associations is highly unlikely. These findings raise
the question as to whether a range of lifestyle and/or genetic confounding factors that favor “moderate drinkers” over abstainers are responsible.

Naimi et al. (2005) reported that 27 (90%) of 30 potential adverse confounders for coronary heart disease were more prevalent among abstainers than among moderate drinkers. Fillmore et al. (2006) classified prospective studies on alcohol and health according to their definition of “an abstainer” (i.e., the reference group that all classes of drinker are typically compared with in these studies). They reported that when studies explicitly excluded former and occasional drinkers from the abstainer reference group, there was limited evidence of protection from moderate alcohol consumption. The underlying theory was that as people age and become unwell, they are more likely to quit or substantially reduce their alcohol consumption, leading to an exaggeration of the already poor health profiles of abstainers (Kerr et al., 2002; Shaper et al., 1988).

Consistent with this view, Mäkelä et al. (2005) showed that reclassifying former drinkers as abstainers, thereby placing them in the reference group, markedly lowered the relative risk (RR) estimates for all active drinkers. Taking a more rigorous approach to the role of potential bias caused by former drinkers, Liang and Chikritzhs (2013) argued that former drinkers should be combined with current drinkers when drinking groups are compared with lifelong abstainers and that bias is not eliminated by merely separating former drinkers from abstainers.

A recent investigation of a large cohort from the European Prospective Investigation into Cancer (EPIC; Bergmann et al., 2013) used an analysis that took into account mortality risks from multiple and competing causes at multiple points over the life course. A reduced risk of death from heart disease was associated with alcohol consumption, but only when study participants with a history of ill health were excluded from analysis. Such exclusions are often conducted to mitigate confounding but may also be a source of selection bias. The authors concluded: “The apparent health benefit of low to moderate alcohol-use found in observational studies could therefore in large part be due to various selection biases and competing risks, which are related to both lifetime alcohol use and risk of disease, usually occurring later in life” (Bergmann et al., p. 1789).

Competing risks are also an issue for studies of all-cause mortality because the comparative risk of different diseases varies across the life course (e.g., coronary disease usually occurs later in life than does injury, cancer, or liver disease). This in turn creates selection bias in the sampling of individuals available to participate in cohort studies, especially in older cohorts (Stockwell & Chikritzhs, 2013).

The kinds of methodological problems identified above are quite common in this literature, in particular the practice of misclassifying former and occasional drinkers as abstainers (Stockwell et al., 2012).

Objective and overall analytic strategy

The purpose of the current study was to investigate the extent to which abstainer reference group bias (e.g., mixing former and occasional drinkers with abstainers) and other potential study-level confounders influence the risk relationship between alcohol use and mortality. Changes in RR estimates will also be examined after progressively excluding studies from meta-analyses based on theory-driven methodological design problems outlined in previous critiques (Stockwell & Chikritzhs, 2013; Stockwell et al., 2012). Consistency of results across these different analyses will be assessed to address the question as to whether low-dose alcohol consumption provides net protection in relation to all-cause mortality.

Method

Overall approach

We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (Moher et al., 2009) on original prospective studies concerning the association between alcohol consumption and all-cause mortality. The study protocol was first approved as an R01 grant application to the U.S. National Institutes of Health (Award # 1RO1AA019939–02) and is presented as online Appendix A. (See “Supplementary Materials” available with this article online.) The codebook is also available from the authors on request.

Inclusion criteria

Included studies were original English-language research articles published in the peer-reviewed literature that quantified the relationship between all-cause mortality and alcohol consumption among human populations in cohort studies. All genders, age groups, and subjects from any racial, ethnic, cultural, or religious groups were eligible for inclusion, regardless of geographic region. Studies were excluded if all-cause mortality outcomes could not be separated from morbidity outcomes. Studies were also excluded if the sample was defined in terms of pre-existing illness or poor health status. When more than one publication of the same study was available, the most recent or comprehensive in its treatment of potential bias and confounding was selected.

Data sources

We identified all potentially relevant English-language articles published up to December 31, 2014, by searching PubMed (last searched February 25, 2015) and the Web of Science and through reference list cross-checking of previous meta-analyses.
Search strategy

We used the following key words and subject headings to identify relevant articles in electronic databases: [mortality OR death OR coronary heart disease OR coronary artery disease OR ischemic heart disease OR atherosclerotic heart disease] AND [alcohol OR consumption OR ethanol OR alcohol drinking] AND [cohort OR prospective OR longitudinal].

Study selection

Two trained reviewers read the titles of all the citations retrieved from the electronic database searches and removed those clearly unrelated to the relationship between mortality and alcohol consumption. At the next stage of study selection, abstracts were reviewed to further exclude studies that clearly did not meet inclusion criteria. At the third stage, the full articles were checked for eligibility with cross-checking by senior investigators. Reasons for exclusion were documented at each stage. The reference lists from two previous meta-analyses—Fillmore et al. (2006) and Ronksley et al. (2011)—also were searched for additional eligible studies that would not otherwise have been included.

Data extraction

Two reviewers extracted and coded data from all studies fulfilling the inclusion criteria, and any disagreements were resolved by discussion with the investigators. The original Fillmore et al. (2006) codebook was refined to provide more detailed classifications of the type of reference groups used and methods of quantifying alcohol consumption and study characteristics. The coding of all variables in the analysis presented here was double-checked by the first two authors (T.S. and J.Z.).

Data items

Summary measures of outcome. The outcome of interest was defined as all-cause mortality. Hazard ratios and rate ratio estimates of mortality in individual studies were used as the RR estimates. Where studies only reported mortality rates, these were converted to RR estimates (Woodward, 2000). When occasional drinkers were the reference category and risk for abstainers was independently assessed, risk values were recalculated with abstainers as the reference group (Fillmore et al., 2006).

Measures of alcohol consumption. The primary exposure variable of interest was mean daily alcohol consumption in grams of ethanol assessed at baseline. When studies did not define the grams of alcohol per unit or drink, we used published sources for country-specific estimates of typical drink size varying from 8 g in the United Kingdom to 19.75 g in Japan (see Appendix A) (International Center for Alcohol Policies, 2010; Turner, 1990).

We converted alcohol intake into grams per day using the midpoints of reported categories. For open-ended top categories (e.g., ≥6 drinks/day) we followed other meta-analysts by adding three quarters of the range of the next lowest category to the lower bound (e.g., if 3–5 drinks, this would be \(6+((5-3) \times 0.75) = 7.5\)) (Roerecke & Rehm, 2012). It was necessary to make some assumption or estimate of mean consumption for these upper unbounded categories.

We used a predetermined definition of “low-volume” drinking (up to 20 g of ethanol per day for both men and women) against which to test the health benefits hypothesis based on Australian National Health and Medical Research Council low-risk drinking guidelines (National Health and Medical Research Council of Australia, 2009). This was operationalized as up to 24 g per day given that respondents in the studies reported whole drinks rather than grams: 24 g per day is closer to two than three 10-g standard drinks per day. We used the broad definition of “occasional drinking” as less than one drink per week, because few studies reported outcomes for drinking less than monthly.

Quality assessment

To identify potential study-level covariates to be controlled in multivariable meta-regression analyses (Greenland, 1998; Normand, 1999), each study was coded for publication year, sample size, population characteristics (age, gender, country), and whether covariates (e.g., smoking status, previous illness) were controlled for in individual studies. Covariates available for all selected studies were median age of study participants at first assessment, sex, country in which a study was conducted, date a study was conducted, number of years of follow-up, whether persons with previous illnesses were excluded, and quality of the measure used for typical daily alcohol intake.

On theoretical grounds, it was expected that a long follow-up period, inclusion of individuals with previous illnesses, and an earlier age at intake would be study characteristics that reduce selection biases (Bergmann et al., 2013; Stockwell & Chikritzhs, 2013). Studies were classified according to the presence or absence of two key types of potential bias: (a) including former drinkers and/or (b) including occasional drinkers in the abstainer reference category.

Following Fillmore et al. (2006), lifetime abstinence was strictly defined as zero consumption and did not include studies with any level of occasional lifetime or past-year drinking (e.g., less than 12 drinks or “rarely” or “hardly ever” drinking). Such self-reported infrequent drinkers have been shown to greatly underreport their personal consumption (Stockwell et al., 2014; Ye et al., 2013). When studies assessed usual or typical drinking patterns over a month or a week, it was assumed that individuals classified as abstain-
ers by this method would include occasional drinkers (e.g., abstaining in a typical week is still consistent with drinking less than once a week). We coded a drinking measure as “adequate” for the purpose of estimating average daily alcohol intake if both quantity and frequency of drinking were assessed for a period of at least 1 week. Given that simple quantity–frequency measures of drinking typically result in substantial underreporting (e.g., Stockwell et al., 2014), we recognize these are minimal criteria for adequacy of measurement, necessitated by the poor overall quality of drinking measures in this literature.

Analyses

Visual inspection of the data suggested the presence of extreme outliers among estimates of the risk of all-cause mortality from drinking. Estimates of RR were classified as “extreme” when they were outside of the interval of the sample mean of natural log RR ± 2 times the standard deviation of estimates within each drinking category (Acuna & Rodrigues, 2014; Pagano & Gauvreau, 2000; Woodward, 2000). This procedure identified 11 risk estimates significantly below the mean (RR range: 0.1–0.46) and 18 risk estimates markedly higher (OR range: 1.89–4.57). Compared with other available methods (Cook & Weisberg, 1982; Viechtbauer & Cheung, 2010), this is a conservative approach excluding relatively few risk estimates. Removal of outliers made no substantive difference to the results; therefore, models are presented without any outlier estimates excluded.

Publication bias was assessed first through visual inspection of the funnel plot of log-RR of all-cause mortality due to alcohol consumption against the inverse standard error of log-RR (see Figure C1 in Appendix C) (Woodward, 2000). We also used Egger's linear regression method (Egger et al., 1997) to explore the role of abstainer biases caused by drinker misclassification errors and other predetermined study quality differences with few or no values and to make the models more efficient. Median cohort age, sex, country, quality of drinking measure, and abstainer bias variables were included as covariates in adjusted models. The country in which a study was conducted was dichotomized into those with mainly Caucasian populations versus without variable to reflect evidence that health protection from moderate drinking was more likely to be observed among Caucasians (Kerr et al., 2011).

Other covariates were selected for inclusion on empirical grounds based on p values of bivariable tests of the natural log-RR and each covariate, and significant correlations with other variables. Based on bivariable analysis of the data set, any variable producing a bivariable test result with p < .20 was considered a candidate for the multivariable regression analyses of the natural log-RR of all-cause mortality and alcohol consumption (Hosmer & Lemeshow, 2000). Independent variables with particularly high intercorrelations (>.30) were identified, less precise measures were excluded (Stokes et al., 2000), and the variable pool was reduced to avoid non-significant variables and collinearity (Pagano & Gauvreau, 2000).

Median age of a study cohort was treated as a continuous variable, whereas other variables with fixed multiple response options were all reduced to two or three category variables (see Table 1 and Table D1 in online Appendix D) to remove options with few or no values and to make the models more efficient. Median age of the study population at intake, gender, or being a mainly Caucasian versus non-Caucasian population were tested as possible effect modifiers of the relationship between alcohol consumption and mortality. No significant interactions were observed; therefore, pooled meta-analyses of all studies are presented.

All significance tests assumed two-tailed p values or 95% CIs. All statistical analyses were performed using SAS Version 9.3 (SAS Institute Inc., Cary, NC), and the SAS PROC MIXED procedure was used to model the log-transformed RR.

Synthesis of results

We used three separate meta-analytical approaches to explore the role of abstainer biases caused by drinker misclassification errors and other predetermined study quality
variables. For the first approach (Table 3), analyses were conducted on all 87 studies with the effects of various abstainer biases controlled for by inclusion of covariates in all models. Second, stratified meta-analyses were performed on four distinct subsets of studies grouped according to the number and type of abstainer biases present (Table 4). A third approach (Table 5) modeled only studies that met stricter quality criteria; that is, the analysis included studies in which only strictly defined lifetime abstainers were included in the reference group, there was an adequate measure of mean daily alcohol volume, smoking status was controlled for, and median age of the study population was less than 60 years at intake (to minimize lifetime selection biases at enrollment) and at least 55 years at follow-up (i.e., an age at which coronary heart disease and hence potential health protection may occur). Sensitivity analyses were conducted in which studies were excluded one at a time to determine if they were influential in the significance of observed estimates. Synthesis of results essentially involved examining the consistency of results across these three analytic strategies.
Results

Study selection

Of the 2,662 studies initially identified, 87 satisfied the criteria for meta-analysis on all-cause mortality outcomes after further removing studies for reasons identified in Figure 1. Citations and details of all included studies can be found in Tables B1–4 in online Appendix B.

Study characteristics including controls for potential bias

The 87 selected studies included a total of 523 estimates of the risk relationships between levels of alcohol consumption and all-cause mortality. Among these, 30 studies reported separate estimates for men and women, 31 for men only, 7 for women only, and 19 for both combined. Only 13 of these studies (127 risk estimates) were coded as free of abstainer biases because they strictly defined lifetime abstainers as the reference group. Table 1 summarizes these and other study characteristics. A summary of potentially confounding variables controlled for or not in each study is provided in online Appendix D (Table D1).

Results of individual studies

Two forest plots illustrate the range of RR estimates for (a) any level of drinking (Figure C2 in online Appendix C) and (b) low-volume drinking (Figure 2) across individual studies (Woodward, 2000). Consistent with most previous meta-analyses, these indicate (a) a wide range of estimates across different studies and (b) mean estimates for low-volume drinking significantly below unity, indicating health protection in comparison with abstainers. When all drinking outcomes are considered collectively in each study and compared against those for abstainers, no significant overall difference is observed, although again there is great variation across studies (see also Figure C2 in online Appendix C).

Synthesis of results

Pooled estimates of all-cause mortality with limited adjustment. Table 2 presents mean estimates of all-cause mortality risk by level of alcohol intake with standard adjustments only for both precision and between-study variation in estimates. Analyses of simple RR means indicated a significant protective effect for both low-volume (RR = 0.86, 95% CI [0.83, 0.90], p < .0001) and occasional drinkers

Table 1. Characteristics of all studies included in meta-analyses on alcohol use and all-cause mortality

<table>
<thead>
<tr>
<th>Study characteristics</th>
<th>Sample size</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studies (N = 87)</td>
<td>Risk estimates (N = 523)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>61</td>
<td>52.14</td>
<td>276</td>
</tr>
<tr>
<td>Female</td>
<td>37</td>
<td>31.62</td>
<td>178</td>
</tr>
<tr>
<td>Both</td>
<td>19</td>
<td>16.24</td>
<td>69</td>
</tr>
<tr>
<td>Age (Mdn = 54.5 years, SD = 10.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19–49</td>
<td>32</td>
<td>36.78</td>
<td>189</td>
</tr>
<tr>
<td>50–59</td>
<td>29</td>
<td>33.33</td>
<td>194</td>
</tr>
<tr>
<td>60–78</td>
<td>26</td>
<td>29.89</td>
<td>140</td>
</tr>
<tr>
<td>Mainly Caucasian vs not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America, Europe, Australia</td>
<td>77</td>
<td>88.51</td>
<td>460</td>
</tr>
<tr>
<td>Japan, China, India</td>
<td>10</td>
<td>11.47</td>
<td>63</td>
</tr>
<tr>
<td>Years of follow-up (M = 13.4 years, SD = 6.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7–9</td>
<td>37</td>
<td>42.53</td>
<td>191</td>
</tr>
<tr>
<td>10–15</td>
<td>22</td>
<td>25.29</td>
<td>178</td>
</tr>
<tr>
<td>16–40</td>
<td>28</td>
<td>32.18</td>
<td>154</td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No exclusion</td>
<td>53</td>
<td>60.92</td>
<td>320</td>
</tr>
<tr>
<td>Unhealthy excluded</td>
<td>34</td>
<td>39.08</td>
<td>203</td>
</tr>
<tr>
<td>Daily alcohol intake measure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate</td>
<td>64</td>
<td>73.56</td>
<td>394</td>
</tr>
<tr>
<td>Not adequate</td>
<td>23</td>
<td>26.44</td>
<td>129</td>
</tr>
<tr>
<td>Studies with abstainer biases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both former and occasional drinker biases</td>
<td>41</td>
<td>47.13</td>
<td>180</td>
</tr>
<tr>
<td>Former drinker bias only</td>
<td>24</td>
<td>27.59</td>
<td>140</td>
</tr>
<tr>
<td>Occasional drinker bias only</td>
<td>9</td>
<td>10.34</td>
<td>76</td>
</tr>
<tr>
<td>No bias</td>
<td>13</td>
<td>14.94</td>
<td>127</td>
</tr>
</tbody>
</table>

Notes: Mdn = median. *Both = studies in which reference group included both former and occasional drinkers; former = studies in which reference group included former drinkers; occasional = studies in which reference group included occasional/low-volume but not former drinkers, and no bias = studies in which the reference group only included lifetime abstainers.
FIGURE 2. Estimates of the relative risk of all-cause mortality associated with low-volume drinking in 81 studies. CI = confidence interval.
Table 2. Weighted mean relative risk (RR) estimates of all-cause mortality adjusted for between-study variation for different categories of drinkers compared with abstainers (N = 87 studies and 523 risk estimates) with tests of publication bias and heterogeneity, but not adjusted for study characteristics

<table>
<thead>
<tr>
<th>Drinking categories</th>
<th>n of studies</th>
<th>n of risk estimates</th>
<th>Adjusted M RR [95% CI]</th>
<th>Heterogeneity I²</th>
<th>Adjusted M RR [95% CI] vs. occasional drinkers</th>
<th>t test p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstainer</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former drinker</td>
<td>21</td>
<td>42</td>
<td>1.22 [1.14, 1.31]</td>
<td><.0001</td>
<td>1.19 [1.12, 1.27]</td>
<td><.0001</td>
</tr>
<tr>
<td>Occasional</td>
<td>15</td>
<td>32</td>
<td>0.94 [0.79, 0.89]</td>
<td><.0001</td>
<td>1.45 [1.33, 1.59]</td>
<td><.0001</td>
</tr>
<tr>
<td>(=<30 g/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low volume</td>
<td>81</td>
<td>229</td>
<td>0.86 [0.83, 0.90]</td>
<td><.0001</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>(1.30–<25 g/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium volume</td>
<td>63</td>
<td>105</td>
<td>0.95 [0.91, 1.00]</td>
<td>.0313</td>
<td>1.13 [1.05, 1.22]</td>
<td><.0010</td>
</tr>
<tr>
<td>(25–<45 g/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High volume</td>
<td>44</td>
<td>61</td>
<td>1.12 [1.07, 1.17]</td>
<td><.0001</td>
<td>1.33 [1.24, 1.44]</td>
<td><.0001</td>
</tr>
<tr>
<td>(45–<65 g/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher volume</td>
<td>33</td>
<td>54</td>
<td>1.29 [1.22, 1.36]</td>
<td><.0001</td>
<td>1.52 [1.40, 1.66]</td>
<td><.0001</td>
</tr>
<tr>
<td>(≥65 g/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All drinkers combined</td>
<td>87</td>
<td>523</td>
<td>1.00 [0.85, 1.17]</td>
<td>.9613</td>
<td>1.24 [1.08, 1.42]</td>
<td>.0133</td>
</tr>
</tbody>
</table>

Notes: Significant RRs in bold. CI = confidence interval.

(RR = 0.84, 95% CI [0.79, 0.89], p < .0001). Significantly increased risk was evident for former (RR = 1.22, 95% CI [1.14, 1.31], p < .0001), high-volume (RR = 1.12, 95% CI [1.07, 1.17], p < .0001), and high volume drinkers (RR = 1.29, 95% CI [1.22, 1.36], p < .0001). There was significant heterogeneity across studies (p < .001) for all drinking categories using the Q statistic and with I² estimates also all significant and above 50%. No significant publication bias was detected using Egger’s linear regression tests at the .05 significance level for individual drinking categories or all drinkers combined.

Table 2 also presents RR estimates using occasional drinkers instead of abstainers as the reference, as recommended by some prominent researchers (Rehm et al., 2008). The methodology for these estimates is detailed in Box 1, online Appendix A. Compared with occasional drinkers, in this model abstainers were at significantly higher risk (RR = 1.19, 95% CI [1.12, 1.27], p < .0001), low-volume drinkers were not at significantly different risk (RR = 1.02, 95% CI [0.95, 1.10]), and all drinkers combined were at significantly higher risk (RR = 1.24, 95% CI [1.08, 1.42], p = .0133).

Pooled estimates of all-cause mortality after adjustment. Table 3 illustrates two further mixed models with successive adjustments for (a) the precision of estimates and between-study variation and (b) the addition of key study characteristics treated as covariates. In fully adjusted models no significant protection was estimated for occasional (RR = 0.95, 95% CI [0.85, 1.05]), low-volume (RR = 0.97, 95% CI [0.88, 1.07]), or medium-volume drinkers (RR = 1.07, 95% CI [0.97, 1.18]). In each model, both former and high-volume drinkers showed a significantly elevated risk of all-cause mortality. The same pattern of results was obtained in sensitivity analyses after elimination of outliers (not reported).

Figure 3 summarizes the changes in the all-cause mortality RR estimates for low-volume drinkers after successive inclusion of key covariates. As controls for abstainer biases and key covariates are removed, the RR estimate changes from 0.97 (95% CI [0.88, 1.07]) down to 0.86 (95% CI [0.83, 0.90]). Further details of the impact of removing individual covariates from the model are shown in online Appendix E, which confirms the importance of former drinker bias while suggesting that occasional drinker bias may be less influential.

Estimates of all-cause mortality risk among studies stratified by abstainer bias. Although all models using studies with at least one abstainer bias showed evidence of health benefits, the risk of all-cause mortality for low-volume drinkers in bias-free studies (Model 4 in Table 4) was not significantly reduced, although the RR was below unity. By contrast, mortality risk was significantly elevated among higher volume drinkers as well as former drinkers in these models. The available estimates for occasional drinkers (only Model 2 and Model 4 in Table 4) found no significant reduction or elevation in risk of all-cause mortality. Similar results were obtained in sensitivity analyses excluding outliers.

Meta-analysis of higher quality studies. As shown in Table 5, meta-analysis of seven higher quality studies free from abstainer bias indicated no significantly altered risk of all-cause mortality for any drinking group with the exception of a raised risk for higher volume drinkers (RR = 1.58, 95% CI [1.05, 2.38], p = .0295). Sensitivity analysis that each excluded just one study at a time identified Friesema et al. (2007) as being highly influential. The analysis of outliers in the pooled sample of 87 studies also identified 6 of the 8 estimates in this study as extreme outliers.

When this study was removed, all RR estimates increased with both former (RR = 1.31, 95% CI [1.11, 1.55], p = .0022) and medium-volume drinkers (RR = 1.29, 95% CI [1.06, 1.56], p = .0106) having significantly elevated all-cause mortality risk. The risk estimate for low-volume drinkers was close to unity (RR = 1.04, 95% CI [0.95, 1.15]). Results were otherwise stable after removal of each
TABLE 3. All-cause mortality relative risk (RR) estimates for different categories of drinker compared with abstainers, weighted and adjusted for between-study variation and study-level covariates, with adjustment for abstainer biases and study quality-related characteristics (N = 523 estimates from 87 studies)

<table>
<thead>
<tr>
<th>Drinking categories</th>
<th>Studies</th>
<th>Estimates</th>
<th>RR</th>
<th>[95% CI]</th>
<th>(t) test</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former drinker</td>
<td>20</td>
<td>42</td>
<td>1.26</td>
<td>[1.17, 1.35]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Occasional (<1.30 g/day)</td>
<td>15</td>
<td>32</td>
<td>0.86</td>
<td>[0.80, 0.92]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Low volume (1.30–<25 g/day)</td>
<td>81</td>
<td>229</td>
<td>0.89</td>
<td>[0.84, 0.94]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Medium volume (25–<45 g/day)</td>
<td>63</td>
<td>105</td>
<td>0.98</td>
<td>[0.92, 1.04]</td>
<td>.4696</td>
<td></td>
</tr>
<tr>
<td>High volume (45–<65 g/day)</td>
<td>44</td>
<td>61</td>
<td>1.13</td>
<td>[1.06, 1.20]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Higher volume (≥65 g/day)</td>
<td>33</td>
<td>54</td>
<td>1.32</td>
<td>[1.23, 1.41]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Adjusted for six selected covariates & further adjusted for all identified covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former drinker</td>
<td>20</td>
<td>42</td>
<td>1.38</td>
<td>[1.24, 1.54]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Occasional (<1.30 g/day)</td>
<td>15</td>
<td>32</td>
<td>0.95</td>
<td>[0.85, 1.05]</td>
<td>.2815</td>
<td></td>
</tr>
<tr>
<td>Low volume (1.30–<25 g/day)</td>
<td>81</td>
<td>229</td>
<td>0.97</td>
<td>[0.88, 1.07]</td>
<td>.5895</td>
<td></td>
</tr>
<tr>
<td>Medium volume (25–<45 g/day)</td>
<td>63</td>
<td>105</td>
<td>1.07</td>
<td>[0.97, 1.18]</td>
<td>.1738</td>
<td></td>
</tr>
<tr>
<td>High volume (45–<65 g/day)</td>
<td>44</td>
<td>61</td>
<td>1.24</td>
<td>[1.12, 1.37]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>Higher volume (≥65 g/day)</td>
<td>33</td>
<td>54</td>
<td>1.44</td>
<td>[1.30, 1.60]</td>
<td><.0001</td>
<td></td>
</tr>
<tr>
<td>All drinkers combined</td>
<td>87</td>
<td>523</td>
<td>1.04</td>
<td>[0.88, 1.22]</td>
<td>.5625</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Bold indicates statistical significance. CI = confidence interval. aFurther adjusted for median age at intake, sex, Caucasian/non-Caucasian, drinking measure adequacy, former drinker bias, and occasional drinker bias; bFurther adjusted for study follow-up years, inclusion/exclusion of ill subjects, and study levels controls for race and smoking.

FIGURE 3. All-cause mortality relative-risk estimates for low-volume alcohol consumers versus lifetime abstainers with and without influential covariates (n = 81 studies, 229 risk estimates). CI = confidence interval.

Discussion

Summary of evidence

Three meta-analytic strategies were used to explore the role of abstainer reference group biases caused by drinker misclassification errors and several other study-level qual-

of the other six studies, and a similar pattern of results was obtained in sensitivity analyses after elimination of outliers. Examination of the heterogeneity of risk estimates across studies showed these to be significant but substantially reduced in the six higher quality studies without Friesema et al. included (see online Appendix F). \(I^2 \) estimates were below 50% for former, low-, and medium-volume drinkers (i.e., of limited practical significance).

Figure 4 illustrates how the unadjusted estimate of RR for low-volume drinkers approaches unity as abstainer biases were successively eliminated and different subgroups of studies used.
ity covariates in studies of the relationship between alcohol consumption and all-cause mortality. Drinker misclassification errors were common. Of 87 studies identified, 65 included former drinkers in the “abstainer” reference group, 50 included occasional drinkers, and only 13 were free from both these abstainer biases. However, even this last group contained other potentially serious methodological problems that could have biased results in either direction. Using several analytic approaches, we found evidence that abstainer biases and other study characteristics influenced the shape of the risk relationship between mortality and rising alcohol consumption. In summary, analyses of groups of higher quality studies free from abstainer biases were less likely to find evidence of reduced risk of mortality (i.e., health benefits) at low levels of alcohol consumption. Rather, the pattern of results is more consistent with a linear dose response than a

Table 4. All-cause mortality relative risk (RR) estimates for different drinkers compared with abstainers, weighted and adjusted for between-study variation and covariates (N = 523 estimates from 87 studies) in models stratified by type of abstainer bias present

Drinking categories within each group of studies	n	RR	[95% CI]	t test	p
Model 1: Both former and occasional drinker biases present (n = 41 studies)					
Low volume (1.30–<25 g/day)	84	0.91	[0.83, 1.00]	.0433	
Medium volume (25–<45 g/day)	40	1.00	[0.91, 1.10]	.9596	
High volume (45–<65 g/day)	29	1.17	[1.06, 1.29]	.0018	
Higher volume (≥65 g/day)	25	1.30	[1.17, 1.45]	.0001	
All drinkers combined	178	1.07	[0.86, 1.34]	.3754	
Model 2: Former drinker bias only (n = 24 studies)					
Occasional (<1.30 g/day)	20	0.93	[0.82, 1.05]	.2286	
Low volume (1.30–<25 g/day)	73	0.86	[0.78, 0.95]	.0025	
Medium volume (25–<45 g/day)	33	0.99	[0.89, 1.11]	.9251	
High volume (45–<65 g/day)	6	1.09	[0.96, 1.24]	.1900	
Higher volume (≥65 g/day)	8	1.69	[1.41, 2.03]	<.0001	
All drinkers combined	140	1.00	[0.80, 1.25]	.9763	
Model 3: Occasional drinker bias only (n = 9 studies)					
Former drinker	15	1.21	[1.13, 1.30]	<.0001	
Low volume (1.30–<25 g/day)	22	0.86	[0.82, 0.91]	<.0001	
Medium volume (25–<45 g/day)	13	0.91	[0.84, 0.99]	.0303	
High volume (45–<65 g/day)	14	0.99	[0.91, 1.08]	.8694	
Higher volume (≥65 g/day)	5	1.27	[1.12, 1.43]	.0003	
All drinkers combined	69	1.00	[0.83, 1.21]	.9451	
Model 4: No abstainer biases (n = 13 studies)					
Former drinker	26	1.31	[1.09, 1.57]	.0047	
Occasional (<1.30 g/day)	4	0.94	[0.71, 1.25]	.6855	
Low volume (1.30–<25 g/day)	50	0.90	[0.76, 1.06]	.1961	
Medium volume (25–<45 g/day)	19	0.95	[0.80, 1.13]	.5767	
High volume (45–<65 g/day)	12	1.11	[0.93, 1.32]	.2381	
Higher volume (≥65 g/day)	16	1.42	[1.15, 1.75]	.0012	
All drinkers combined	127	1.09	[0.91, 1.30]	.2840	

Notes: Estimates adjusted for sampling variability, between-study variation, median age, gender, and country in all models. Bold indicates statistical significance. CI = confidence interval.

Table 5. Adjusted relative risks (RRs) of all-cause mortality for different levels of alcohol consumption compared with lifetime abstainers estimated from higher quality studies\(^a\) with and without one influential study (Friesema et al., 2007)

| Drinker misclassification errors were common. Of 87 studies identified, 65 included former drinkers in the “abstainer” reference group, 50 included occasional drinkers, and only 13 were free from both these abstainer biases. However, even this last group contained other potentially serious methodological problems that could have biased results in either direction. Using several analytic approaches, we found evidence that abstainer biases and other study characteristics influenced the shape of the risk relationship between mortality and rising alcohol consumption. In summary, analyses of groups of higher quality studies free from abstainer biases were less likely to find evidence of reduced risk of mortality (i.e., health benefits) at low levels of alcohol consumption. Rather, the pattern of results is more consistent with a linear dose response than a

| Drinking categories\(^b\) | \(n\) | RR\(^c\) | [95% CI] | p | \(n\) | RR\(^c\) | [95% CI] | p
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Former drinker</td>
<td>19</td>
<td>1.14</td>
<td>[0.77, 1.69]</td>
<td>.4950</td>
<td>17</td>
<td>1.31</td>
<td>[1.11, 1.55]</td>
<td>.0022</td>
</tr>
<tr>
<td>Low volume (1.30–<25 g/day)</td>
<td>39</td>
<td>0.89</td>
<td>[0.62, 1.29]</td>
<td>.5279</td>
<td>35</td>
<td>1.04</td>
<td>[0.95, 1.15]</td>
<td>.3557</td>
</tr>
<tr>
<td>Medium volume (25–<45 g/day)</td>
<td>11</td>
<td>1.08</td>
<td>[0.72, 1.62]</td>
<td>.7123</td>
<td>9</td>
<td>1.29</td>
<td>[1.06, 1.56]</td>
<td>.0106</td>
</tr>
<tr>
<td>High volume (45–<65 g/day)</td>
<td>7</td>
<td>0.95</td>
<td>[0.62, 1.46]</td>
<td>.8113</td>
<td>5</td>
<td>1.07</td>
<td>[0.83, 1.36]</td>
<td>.6100</td>
</tr>
<tr>
<td>Higher volume (≥65 g/day)</td>
<td>11</td>
<td>1.58</td>
<td>[1.05, 2.38]</td>
<td>.0295</td>
<td>11</td>
<td>1.85</td>
<td>[1.51, 2.27]</td>
<td>.0001</td>
</tr>
<tr>
<td>All drinkers combined</td>
<td>87</td>
<td>1.10</td>
<td>[0.86, 1.41]</td>
<td>.3557</td>
<td>77</td>
<td>1.19</td>
<td>[0.94, 1.49]</td>
<td>.1065</td>
</tr>
</tbody>
</table>

Notes: Bold indicates statistical significance. CI = confidence interval.\(^a\) Studies in which only lifetime abstainers included in the reference group, adequate alcohol measure, median age <60 years at intake and ≥55 years at follow-up; \(^b\)number of risk estimates; \(^c\)estimates adjusted for sampling variability and between-study variation.
J-shaped curve describing the risk relationships between level of alcohol consumption and all-cause mortality.

Our first analytic strategy involved pooling all 87 studies and attempting to control for design characteristics and potential biases in a step-by-step fashion (Table 2 and Table 3). In each model, regardless of degree of adjustment for design characteristics and covariates, we consistently found that former drinkers had significantly elevated risk of all-cause mortality compared with abstainers. This confirms the well-accepted need to control for former-drinker bias and not include former drinkers in the abstainer reference group (Roerecke & Rehm, 2012; Ronksley et al., 2011).

We also replicated the J-shaped curve when only limited controls for study characteristics were used (i.e., showing low-volume drinkers with reduced mortality risk and high-volume drinkers with increased mortality risk). Significant heterogeneity was detected in these estimates. However, a J-shaped curve was not observed when abstainer biases and other study characteristics were controlled for (Table 3). In the fully adjusted model, mortality risk for former, high-volume, and higher volume drinkers was increased, whereas low- and medium-volume drinkers displayed nonsignificant RRs close to unity (RR = 0.97 and 1.07, respectively).

In each of these pooled models, regardless of level of control for study-level characteristics, RRs for occasional drinkers were similar to those for low-volume drinkers. Thus, if occasional drinkers were used as the reference group (as recommended by some epidemiologists, e.g., Rehm et al., 2008), low-volume drinkers would have RRs close to unity in each of these models (i.e., not be experiencing health protective effects). Evidence that lifetime abstainers have poorer health even before their peers begin drinking (Ng Fat & Shelton, 2012) also provides some support for choosing occasional drinkers as the reference group and is consistent with the observation of increased mortality risk for abstainers (RR = 1.19, 95% CI [1.12, 1.27]) versus occasional drinkers shown in Table 2.

On one hand, it can be argued that occasional drinking in most developed countries is more normative than abstinence and also that consumption of less than one drink per week is unlikely to confer any biological health benefit. On the other hand, it can be argued that some low-volume drinkers are underestimating their consumption and are thus misclassified as occasional drinkers (Stockwell et al., 2014).

The second set of analyses stratified studies according to the presence or absence of different types of abstainer bias (Table 4). Here, groups of studies containing former and/or occasional drinker biases also replicated the J-shaped curve—that is, significant protection was observed for low-volume drinkers and elevated risk for higher volume drinkers. However, the model with 13 studies free from abstainer biases showed no significant protection for low-volume drinkers, although the RR estimate was below unity (RR = 0.90, 95% CI [0.76, 1.06]). Former and higher volume drinkers were consistently at increased risk for all-cause mortality in these models.

A third analysis (Table 5) was performed on higher quality studies that were free from abstainer biases, used an “adequate” measure of mean alcohol consumption, followed subjects up to an age at which cardiovascular disease
becomes a greater risk (at least 55 years), and did not use an aged population at intake more likely to be subject to an array of lifetime selection biases (Bergmann et al., 2013). Once more, there was significantly increased risk of all-cause mortality for former and higher volume drinkers, whereas there was no significant protection for low-volume drinkers (RR = 1.04, 95% CI [0.95, 1.15]). Heterogeneity of these estimates across studies was still significant, but, for former, low-, and medium-volume drinkers, it was at a level considered to have no practical importance. Thus, for each of the three strategies, evidence for reduced mortality risk among low-volume drinkers largely disappeared once design and methodological issues were controlled for directly in the analysis or by study selection.

Although former drinkers had a 38% increased risk of mortality compared with lifetime abstainers in the pooled and fully adjusted model (Table 3), there was mixed evidence for the importance of controlling for occasional drinker bias. Only 17 studies reported separate estimates for occasional drinkers even with the broad definition of less than one drink per week. In both the pooled model using all 87 studies and the model with the 13 error-free studies, occasional drinkers had reduced mortality risk, although this was only significant in the pooled model (Table 2). In the model with 13 error-free studies, however, there were only three risk estimates available for occasional drinkers and none at all in the model using the 6 higher quality studies (i.e., occasional drinkers were misclassified as low-volume drinkers in these latter studies).

Uncertainty about the significance of occasional-drinker bias adds a note of caution when interpreting the results of our final model of higher quality studies. Nonetheless, it may be that occasional drinkers are a more appropriate reference group against which to compare low-volume drinkers in that (a) they may have more personal and lifestyle characteristics in common with low-volume drinkers that may otherwise confound observed risk relationships, and (b) it may be implausible to suggest a physiological basis for health benefits associated with occasional consumption (Knott et al., 2015).

Study characteristics other than drinker misclassification errors strongly influenced whether health protective effects were indicated in studies and may be at least as important. Controlling for some study-level variables (including length of follow-up, median age, smoking status, and ethnicity) in the models increased RR estimates for low-volume drinkers. This is consistent with evidence for systematic biases operating across the life course in prospective studies of alcohol and health that will be more pronounced among older populations (Bergmann et al., 2013; Stockwell & Chikritzhs, 2013). The results are also consistent with studies of other lifestyle factors associated with moderate drinking being responsible for the appearance of reduced mortality risk (Naimi et al., 2005) and the possible absence of protective effects in non-Caucasian populations (Kerr et al., 2011).

Limitations

A number of limitations and caveats around our findings need to be acknowledged. A major limitation involves imperfect measurement of alcohol consumption in most included studies. Self-reported alcohol consumption is mostly under-reported (Stockwell et al., 2014), and even the classification of drinkers as lifetime abstainers can be unreliable (Kerr et al., 2002). The number of available studies in some stratified analyses was small, and therefore there may be limited power to control for potential study-level confounders. However, the required number of estimates per variable for linear regression can be much smaller than in logistic regression, and a minimum of at least two estimates per variable is recommended for linear regression analysis (Austin & Steyerberg, 2015), suggesting that the sample sizes were adequate in all models presented.

It has been demonstrated that a pattern of heavy episodic (i.e., “binge”) drinking is not associated with the appearance of reduced health risks even when average daily volume is low (Roerecke & Rehm, 2010). Too few studies adequately controlled for this variable to investigate its effect on different outcomes across studies. Finally, our findings only apply to the net effect of alcohol at different doses on all-cause mortality, and different risk relationships likely apply for specific disease categories.

Conclusions

The hypothesis that abstainer biases crucially determine the shape of the risk relationship between alcohol consumption and mortality is partly supported by our findings. Specifically, the common practice of including former drinkers in the abstainer reference group will bias drinking risk estimates downward, thereby magnifying the appearance of health benefits from low-level drinking. RR estimates for former drinkers were consistently high, second only to the heaviest alcohol consumption category. This is likely because of individuals giving up drinking for health reasons, which bias toward shorter life expectancy, whether or not this is related to their drinking. Evidence for significant bias because of the inclusion of occasional drinkers with abstainers could not be confirmed and requires further investigation, as does the proposal that they replace lifelong abstainers as the most appropriate reference group for evaluating the risk of drinking in future studies.

It is also noteworthy that in all the pooled models presented, regardless of whether outliers were excluded or study-level characteristics were controlled for, occasional drinkers had very similar mortality risks to low-volume drinkers. This means that if occasional drinkers are considered to be a more appropriate reference group than lifetime abstainers, there would be no evidence of health protective effects for low-volume drinkers or any other category of drinker.
In summary, our study suggests that a skeptical position is warranted in relation to the evidence that low-volume consumption is associated with net health benefits. This conclusion is consistent with a recent Mendelian randomization study that found that a genetic variant associated with reduced drinking lowered rather than increased cardiovascular risk among low-volume drinkers (Holmes et al., 2014). We recommend that future prospective studies on alcohol and health minimize bias attributable to the misclassification of former and occasional drinkers by carefully excluding these from the abstainer reference group.

Our analyses also indicate that other study quality characteristics need to be addressed, such as the adequacy of measures of both average daily alcohol consumption and potentially confounding lifestyle variables. We also recommend that (a) outcomes for occasional drinkers should be estimated separately from those for low-volume drinkers, (b) consideration should be given to using occasional drinkers as the reference group in these prospective observational studies given evidence that lifetime abstainers have poorer health for reasons other than their drinking (Ng Fat & Shelton, 2012), (c) following Bergmann et al., drinking behavior as the reference group in these prospective observational studies given evidence that lifetime abstainers have poorer health for reasons other than their drinking (Ng Fat & Shelton, 2012), (c) following Bergmann et al., drinking behavior should be assessed at multiple time points so that more stable drinking patterns can be identified and health risks/benefits more firmly identified, and (d) following Liang and Chikritzhs (2013), efforts should be made to estimate the volume and duration of drinking by former drinkers so they can be correctly classified along with current drinkers for less biased estimates of risk.

Acknowledgment

We acknowledge with deep gratitude the contributions of our late colleague and principal investigator Kaye Middleton Fillmore, Ph.D., to our thinking and the analyses reported in this article.

References

I commend the authors for this valuable review (Stockwell et al., 2016—this issue), which updates and extends earlier work (Fillmore et al., 2006) using state-of-the-art meta-analytic methods and following the PRISMA guidelines. Importantly, theory-driven methodological design problems are analyzed as study-level characteristics. These are then sequentially excluded to investigate the role of mixing former drinkers, occasional drinkers, and lifetime abstainers in reference groups (i.e., abstainer reference group bias)—a common deficiency in all-cause mortality studies. Results focus us again on the quality of the widely circulated evidence that low-dose alcohol confers cardiovascular protection sufficient to lower all-cause mortality. Indeed, some recent systematic reviews and meta-analyses have again emphasized such protection (Ronksley et al., 2011). In Ronksley et al., although a sensitivity analysis examined former drinkers versus nondrinkers in a subset of studies permitting this for cardiovascular mortality and for coronary heart disease mortality, the authors’ methods do not permit strong conclusions about degree of bias introduced when studies are combined, as they are in their primary analyses. Addressing degree of bias is the particular contribution of the present meta-analysis because this is its explicit aim (Stockwell et al., 2016).

Further emphasizing the importance of methodologically driven work like this, the belief in protective effects of moderate drinking is sufficiently widely held to have been incorporated into global burden of disease estimates (e.g., Lim et al., 2012), and we are beginning to see renewed calls from certain medical commentators to prescribe moderate drinking for lifelong nondrinkers of ages about 40 to 50 (Rubin, 2014). Offering medical advice like this, I believe, is premature, and I have strongly opposed this on a number of grounds, including methodological weaknesses in numerous epidemiological studies (studied anew in this meta-analysis) marshaled as evidence of reductions in cardiovascular disease and all-cause mortality (Greenfield & Kerr, 2014). These methodological weaknesses often involve the inability to accurately specify lifetime abstainers as a reference category or separate this group from former heavy drinkers.

The conclusions of the present meta-analysis (Stockwell et al., 2016—this issue) re-emphasize that the widespread design problem of including former drinkers in the abstainer reference group will magnify the apparent health benefits of moderate intake. The meta-analysis notes that “of 87 studies identified, 65 included former drinkers in the ‘abstainer’ reference group” (Stockwell et al., p. TKTK). In addition, 50 included occasional drinkers in this group, leaving only 13 studies without either bias. (It would be useful to re-analyze from the same perspective the set of 84 studies of selected cardiovascular disease outcomes included in the Ronksley et al. [2011] meta-analysis—see also Brien et al. [2011].)

Kerr and I (Greenfield & Kerr, 2014) have argued further that doctors or medical assistants attempting to quickly assess whether a patient is a lifetime abstainer (and so a target of the ill-founded drinking advice) will likely encounter the same ascertainment problem seen in studies involving lifetime abstainer groups. We know from panel surveys that many respondents who later report never in their lives having drunk alcohol reported at earlier interviews that they were then prior or current drinkers (Caldwell et al., 2006; Rehm et al., 2008). In addition, no research to my knowledge has yet studied drinking behavior outcomes in the clearly heterogeneous group who would state in a medical assessment that they never were drinkers following advice from their doctor to “relax and take a drink a day, preferably with dinner” (Rubin, 2014, p. 2890). Methodological work on claiming never to have drunk alcohol in even “neutrally framed” panel surveys results in false lifetime abstention answers (Rehm et al., 2008), and questions from a medical authority figure could lead to even more denial of former drinking. An experimental trial of screening, followed by advice/no advice, can readily be envisioned, but would such a trial clear a well-informed human subjects review, given the uncertainties of outcomes and potential risks to participants in the intervention arm, given that such advice could translate into heavy per occasion or even dependent drinking?

Relevant too is the finding from the Stockwell et al. (2016) meta-analysis that in all the pooled models, occasional drinkers had lower mortality risks than low volume
drinkers. Occasional drinkers were defined as drinking less than 1.3 g/day (or about a standard drink every 10 days on average), whereas low volume was defined as this level up to 25 g/day (the volume level often termed moderate drinking). Moderate rather than occasional drinking is believed to engage biological mechanisms conferring coronary artery protection, such as those that elevate high-density lipoprotein cholesterol levels. A recent meta-analysis of intervention studies found effects of drinking alcohol on several cardiovascular disease–related biomarkers, including a dose-response relationship with high-density lipoprotein cholesterol (vs. not drinking; Ronksley et al., 2011).

To really resolve the controversy, we need more high-quality prospective mortality studies. I would further urge that future studies address drinking pattern, ideally with baseline measures including life-course heavy drinking assessments (Greenfield et al., 2014), because heavy drinking can and does occur at low volume levels, considerably affecting mortality (Rehm et al., 2006; Roerecke et al., 2011). Absent life-course heavy drinking measures, volume-based mortality studies will remain inherently limited.

Acknowledgment

Work on this commentary was supported by National Institute on Alcohol Abuse and Alcoholism (NIAAA) Grants P50 AA005595, R01AA021448, and R01AA016644 to the Public Health Institute, Alcohol Research Group. Opinions expressed are those of the author and not necessarily of NIAAA or the National Institutes of Health.

THOMAS K. GREENFIELD, PH.D.
Scientific Director, Alcohol Research Group
Public Health Institute
6475 Christie Avenue, Suite 400
Emeryville, CA 94608
tgreenfield@arg.org

References

Why do alcohol’s assumed benefits have any role in policymaking?

The complexity inherent in the question, “Do ‘moderate’ drinkers have reduced mortality risk?” (Stockwell et al., 2016—this issue) arises from our reliance on cohort studies for evidence and the range of methodological weaknesses that bedevil them. These have been best articulated in discussions of alcohol and cardiovascular risk (Chikritzhs et al., 2009; Jackson et al., 2005; Naimi et al., 2005), where much of the putative mortality benefit would arise. Some sources of error—such as the timing, reliability, and dimensions of alcohol measurement; the categorization of drinkers; and the control of confounding—allow us to differentiate the quality of cohort studies. Others are intrinsic to the design itself, such as residual confounding from a plethora of lifestyle variables. These problems are not mitigated by combining studies in a meta-analysis, which is why skepticism about meta-analysis of observational studies is still warranted (Egger et al., 1998).

The J-shaped curve of average alcohol consumption and mortality risk is biologically counterintuitive. Stockwell and colleagues have zeroed in on one important methodological flaw in existing studies—the nature of the reference group used to generate the curve—and their meta-analysis moves understanding forward substantially. It produces two important findings, the first being the new risk estimates that indicate lack of mortality benefit for low-volume drinkers when compared with an appropriate reference group and adjusted for some study-level variables. One could debate how well other sources of error are dealt with, but the indisputable second message is how sensitive the estimates are to improving classification of abstainers and, therefore, how plausible it is that there is an alternative explanation for the putative benefits of alcohol.

The fallibility of cohort studies in reliably estimating effects of health-related behaviors and interventions should no longer be a surprise. However, even after randomized controlled trials have provided vivid demonstrations of cohort studies failing to adequately estimate health impacts of socially patterned exposures (Beral et al., 2002; Hennekens et al., 1996), investigators are inattentive to these issues when making bold claims about the strength of their findings (Ronksley et al., 2011).

This new evidence is important but is not the final word on the topic. It shows how sensitive studies are to misclassification affecting the reference group, while other researchers have focused on different weaknesses in the evidence, using different methods. For example, a meta-analysis by Roerecke and Rehm (2012) showed substantial heterogeneity in associations of low-volume drinking with cardiovascular disease when stratified by sex and outcome, and a Mendelian randomization study (Holmes et al., 2014) supported residual confounding and selection biases as an explanation for the observed effect. In combination, these studies suggest that effects of moderate alcohol on cardiovascular disease and total mortality are poorly estimated and that evidence for causality is weak. There will be value in continuing to pursue this scientific question to put it beyond debate and to better estimate the health impact of alcohol use in populations. The information will also allow individuals to make informed decisions about their own health.

On the other hand, motivation for this kind of work is often framed, as in this article, as understanding the balance of risks and benefits of alcohol consumption to inform “public health policies to reduce alcohol’s harm” (p. TKTK) and “national guidelines for low-risk alcohol use” (p. TKTK). The argument for this is not elaborated on by Stockwell and his colleagues, and I don’t accept that it is self-evident.

If there were proven mortality benefits of drinking alcohol at low levels from middle age, appropriate advice would be to limit drinking to this level and not drink at all in situations where psychomotor impairment could pose a risk of injury. Public policy would aim to keep alcohol consumption at low levels across the whole population. Conversely, if the scientific consensus supported no health benefits from drinking, advice would be identical. Recommendations to regulate price, availability, and promotion of alcohol—as the most effective and equitable interventions for achieving lower levels of consumption and harm—would also be identical. There has never been any ethical basis for promotion of alcohol drinking to reduce cardiovascular risk, which is the major...
purported health benefit, and therefore no reason to account for cardiovascular benefits when considering population-level policies.

The extent to which alcohol industry actors have been involved in framing the balance of risks and benefits as a prominent theme when considering harmful impacts of alcohol is not documented, but as a strategy it has “merchants of doubt” (Oreskes & Conway, 2010, pp. 34–35) fingerprints on it. The good-news story of health benefits from drinking has long been exploited, and sticking with an individual-level perspective distracts from the inequitable distribution of alcohol’s harms across the population. Reduction in cardiovascular risk among a minority of older adults has no potential to “balance” alcohol-related harm suffered by others living in the same regulatory environment (Connor et al., 2015). As an intoxicating, addictive, toxic, carcinogenic drug, alcohol is not a good choice as a therapeutic agent. Evidence-based guidelines for reducing cardiovascular risk incorporate diet modification and physical activity and then, where indicated, use some of our safest medications (National Institute for Health and Care Excellence, 2014). In contrast to that of alcohol, effectiveness of the interventions has been demonstrated and they have no abuse potential.

I would suggest that the idea of health benefits of alcohol having a place in decision-making about policy and practice is a triumph of spin-doctoring, as contrived as the alleged split among scientists over climate change. We need to contribute to discussions about policy with confidence in the substantial arguments about the health of the population and not be drawn into a debate about possible benefits to a minority of individuals.

Professor Jennie Connor
Chair in Preventive and Social Medicine
University of Otago
Dunedin, New Zealand
jennie.connor@otago.ac.nz

References

In this issue of the *Journal of Studies on Alcohol and Drugs*, Stockwell and colleagues (2016) have conducted a thorough analysis of alcohol consumption on all-cause mortality. The study’s abstract indicates that the findings have implications for burden-of-disease studies and for low risk–drinking guidelines. We consider here what these implications might be.

Alcohol has a variety of effects on the body–some protective, many adverse. Based on biological considerations, light drinking has some beneficial effects via platelets, impact on high-density lipoprotein cholesterol and other markers of cardiovascular risk, and hormones. On the other hand, for many alcohol-related diseases there seems to be no lower threshold for adverse risk from drinking (Bagnardi et al., 2013). In this duality, alcohol is not different from other psychoactive substances, which carry risks of harm but are also used as medicines. Whether protective or adverse effects dominate for drinkers averaging a small volume of drinking is likely to depend on age and cultural, social, environmental, and genetic factors and on whether their drinking includes heavy drinking occasions.

The studies available for Stockwell et al.’s analysis are from select cohorts of a limited range of societies, with substantial methodological deficiencies. Most studies depend on a single self-reported measure of volume of drinking at the time of enrollment in the study. Apart from potential reporting error, this measure does not take account of the well-documented variability over time in an individual’s drinking pattern (Skog & Rossow, 2006). Results from this tradition of studies are thus a poor basis on which to base advice.

But there is substantial public interest in whether the net result for light drinking is protective or adverse. Findings of protective effects also have substantial commercial implications (Thompson, 2013) and are of political importance in continuing cultural struggles over the moral status of alcohol and intoxication. Articles on alcohol patterns and all-cause mortality have thus been used for the symbolic debate on protective effects. The main arguments have been about reference groups (Fillmore et al., 2006) and the drinking categories at the lower end (as there are no protective effects claimed for heavy drinking). The ground here is indeed infirm; for example, in a U.S. national survey, more than half of those describing themselves as lifetime abstainers in the follow-up had reported drinking previously (Rehm et al., 2008). In this situation, it seems impossible to determine true comparisons to abstention in Western high-income countries; prospective studies in countries where abstention is not a cultural abnormality could help quantify effects.

The above questions are separate issues from the question of how alcohol should figure in burden-of-disease studies, because for good reason these focus on aggregating risks across specific causes of death and disability. The same average drinking level will have markedly different effects in different countries based on their different composition of causes of death (Rehm et al., 2015), often markedly different from the composition in the cohort studies.

For low risk–drinking advice to the population, in societies such as in Europe and the Americas where alcohol is enmeshed in the culture, the threshold of “low risk” is customarily set quite high (Rehm et al., 2014). As long as this is true, the relatively limited protective effects for specific conditions are essentially irrelevant. Articles in medical journals (e.g., Thompson, 2013) are misleading by focusing on protective effects of alcohol, because these effects are more than counterbalanced by adverse effects for a majority of drinkers. Although the population impact will depend on many factors, “less is better” seems to be a general rule for population guidance.

Jürgen Rehm, Ph.D.

Centre for Addiction and Mental Health

33 Russell Street

Toronto, ON, M5S 2S1, Canada

jtrehm@gmail.com

Campbell Family Mental Health Research Institute

250 College Street

Toronto, ON, M5T 1R8, Canada
References

COMMENTARY

Stockwell et al. response: Moderate use of an “intoxicating carcinogen” has no net mortality benefit—
is this true and why does it matter?

We thank our commentators for their thoughtful insights, questions, and criticisms of our article (Stockwell et al., 2016—this issue).

Connor (2016) highlights well-substantiated concerns over the validity of conclusions based on observational longitudinal studies of health in general, noting instances in which randomized controlled trials have disconfirmed conclusions based on meta-analysis of cohort studies (e.g., hormone replacement therapy). Greenfield (2016) notes how few cohort studies on the link between alcohol use and mortality take account of the patterning of drinking, whether over weeks, months, or a lifetime. Rehm et al. (2016) suggest that although analysis of alcohol and all-cause mortality from published studies holds interest especially at a political level, in practice they recommend different types of studies on which to base estimates of the global burden of disease and low-risk drinking guidelines. We have also received other comments that we will address briefly here.

We accept these and other limitations. Any meta-analysis is only as good as the quality of the available studies—and the criteria applied to assess variations in their quality. Our vision was to explore what happened to the J-shape curve when meta-analysis is conducted with and without adjustment for the presence of a few empirically and theoretically derived methodological concerns. We focused especially on the effects of contamination of the all-important “abstainer” reference group, against which the health of all other categories of drinkers is usually compared in these studies. There are strong empirical and theoretical grounds for exploring the effects of abstainer group biases. In answer to Greenfield’s question about how extensive these problems were in previous meta-analyses and, in particular, that by Ronksley et al. (2011), these have been detailed elsewhere (Stockwell et al., 2012). Among the 84 studies in their review of alcohol and cardiovascular disease as well as all-cause mortality, only 21 excluded former drinkers from the abstainer reference group, and only 16 had also excluded occasional drinkers. Further, we found only two studies in the Ronksley et al. (2011) meta-analysis that met a set of other basic quality criteria. The varying and overall poor quality of this literature motivated our study to investigate how adjusting for study quality can influence observed outcomes.

Turning to criticisms of our own study methods, one reviewer took issue with our definition of what constitutes “low-volume” alcohol consumption. We defined this as at least one 10 g standard drink per week and up to an average of two drinks per day. At the lower end, one drink per week could be considered “homoeopathic,” but we note that (a) we had a separate category of an even more homoeopathic level of drinking, namely less than one drink per week; (b) in our pooled analysis, we found the same level of reduced mortality risk for these “occasional” drinkers as for the low-volume drinkers; and (c) as it is, most studies in this literature combine these very low drinking levels into a larger category of moderate drinking. Indeed, Greenfield comments that occasional (“homoeopathic”) drinkers having the same protection as moderate drinkers is a strong ground for skepticism about the biological plausibility of the idea that alcohol accounts for net mortality benefits observed for moderate drinkers.

It has also been pointed out that our definition of low-volume drinking is not consistent with the U.S. Dietary Guidelines (U.S. Department of Agriculture and U.S. Department of Health and Human Services, 2010). Our reference point for this definition (supported by Greenfield) was Australia’s low-risk drinking guidelines (National Health and Medical Research Council of Australia [NHMRC], 2009) developed by the leading scientists including Robin Room and Jürgen Rehm. It has also been suggested that our applying the same definition of low-volume drinking to males and females is a weakness. However, we note that (a) Australia’s guidelines provide the same advice for males and females and (b) we needed to keep a standard definition because we were interested in identifying gender differences in the pattern of results. We found none and hence report findings for men and women combined.

Rehm et al. (2016) also argue that we draw on a literature that is so methodologically deficient and globally unrepresentative that it should not be used as a base either for estimates of the global burden of disease or for devising low-risk drinking guidelines. We did indeed discuss
implications of our findings for drinking guidelines, partly because meta-analyses of alcohol and all-cause mortality have on several occasions been featured as the basis for the levels chosen (e.g., NHMRC, 2001; Stockwell et al., 2012). We agree, however, that there is much shaky and uncertain ground upon which both guidelines and the burden of disease have been estimated. We also agree that there is much interest in attempts to estimate the net effects of alcohol on mortality and that this is part of a larger debate about the role of alcohol in society. Meta-analyses of alcohol and all-cause mortality have played an important role in this and are frequently cited (e.g., Fillmore et al., 2006; Ronksley et al., 2011). We suggest that it is still of interest to explore the validity and replicability of the famous J-shaped curve in this literature under different conditions. Unlike Rehm et al., however, we also suggest that the same uncertainty applies to research on the impact of light drinking on biological markers for cardiovascular disease. They cite evidence of beneficial effects of light drinking on platelets and high-density lipoprotein (HDL). However, the significance of HDL as a biomarker for cardiovascular disease is now under question (Voight et al., 2012). Furthermore, other more proximal markers of cardiovascular risk, such as carotid intima media thickness, are positively associated with even low levels of alcohol consumption (Juonala et al., 2009). Shakiness of the J-shape curve in observational studies is just one component of a growing list of reasons to be skeptical about alcohol’s hypothesized health benefits when used in moderation (Chikritzhs et al., 2015).

Among the most thought-provoking comments we felt was Connor’s question as to why clinical practice or policy should be influenced by the idea that “an intoxicating, addictive, toxic, carcinogenic drug” such as alcohol could be recommended as a therapeutic agent. In our experience, this clear-sighted perspective is rarely evident among high-level decision-makers, and we have observed policymakers hesitate to introduce effective alcohol policies, or even to support the addition of warning labels on alcohol containers, for fear they might undermine or contradict possible health benefits of alcohol use. We are also aware of some clinicians, especially cardiologists, recommending low-volume alcohol use for therapeutic purposes (e.g., Rubin, 2015) and also alcohol industry groups selectively reporting studies finding health benefits to promote their product (e.g., Masterson, 2015). In closing, we suggest it is still important to question the scientific validity of health claims for alcohol, although we agree that there are many other potential criticisms (e.g., Chikritzhs et al., 2015; Fekjaer, 2013) of this literature we could not examine in the present study. Mounting doubts about the validity of alcohol’s health benefits are in keeping with Rehm et al.’s (2016) recommendation that drinking guidelines somehow need to convey the challenging idea that “less is better.”

Acknowledgment

The study was funded by the U.S. National Institutes of Health (Award # 1RO1AAO19939-02). This grant was initially held as principal investigator by our late colleague Kaye Middleton Fillmore, Ph.D. We acknowledge with deep gratitude her contributions to our thinking. All authors also received personal salary support from the Institute for Scientific Analysis, San Francisco, CA.

Declaration of Interest

Statement for Tim Stockwell
Ten years ago I received expenses from the then International Center on Alcohol Policy to attend meetings in New York and Belfast. This organization is funded by alcohol industry groups. I no longer accept funds for any purposes from such sources.

I am currently contracted to the Swedish alcohol monopoly, Systembolaget, to conduct an international collaborative study concerning the policy impacts of government alcohol monopolies on health and safety. Systembolaget was set up to limit the profit incentive in providing alcohol to the public and to minimize adverse health and safety consequences.

Three years ago I accepted funds from Lundbeck, a Danish international pharmaceutical company, to attend a meeting to critique research on a drug they had developed for the treatment of alcohol dependence. I received a fee and travel expenses for a half-day meeting. More than 30 years ago I was paid by a grant from the German drug company Merck to conduct a study of a drug they were developing to treat alcohol dependence. This was paid to the Addiction Research Unit, Institute of Psychiatry, University of London, and paid my salary for 1 year.

Statement for Jinhui Zhao
No conflicts of interest to declare

Statement for Timothy Naimi
No conflicts of interest to declare

Statement for Tanya Chikritzhs
No conflicts of interest to declare

Tim Stockwell, Ph.D.
Centre for Addictions Research of BC
University of Victoria
Victoria, British Columbia, Canada

Jinhui Zhao, Ph.D.
Centre for Addictions Research of BC
University of Victoria
Victoria, British Columbia, Canada

Timothy Naimi, M.D.
Boston University Schools of Medicine and Public Health
Boston University
Boston, Massachusetts

Tanya Chikritzhs, Ph.D.
National Drug Research Institute
Curtin University
Perth, WA 6845, Australia
References

