Submission No 67 Item F, Tab 1 (2/2)

INQUIRY INTO ENROLMENT CAPACITY IN INNER CITY PUBLIC PRIMARY SCHOOLS

Name:

NSW Department of Education

Date received: 27 September 2016

:OK.OK /Pgs:ALL /Prt:11-Apr-2016 10:21 /Seq:3 of 4 Ř

• • •

Req:R501192 /Doc:DP 0729635 P /Rev:28-Jun-1992 /Sts:OK.OK /Pgs:ALL /Prt:11-Apr-2016 10:21 /Seq:4 of 4 Ref:als /Src:T

Section 149 Certificates

City of Sydney Town Hall House 456 Kent Street Sydney NSW 2000

Telephone +61 2 9265 9333 Fax +61 2 9265 9222 council@cityofsydney.nsw.gov.au

GPO Box 1591 Sydney NSW 2001 cityofsydney.nsw.gov.au

JEFFERY & KATAUSKAS EIS PO BOX 976 NORTH RYDE BC NSW 1670

PLANNING CERTIFICATE

Under Section 149 of the Environmental Planning and Assessment Act, 1979

Applicant:	JEFFERY & KATAUSKAS EIS
Applicant's reference:	E29319K GLEBE (GF)
Address of property:	1 Wentworth Park Road , GLEBE NSW 2037
Owner:	THE STATE of NEW SOUTH WALES
Description of land:	Part Lot 679 DP 729635, Lot 680 DP 729635
Certificate No.:	2016301988
Certificate Date:	11/04/16
Receipt No:	47382
Fee:	\$80.00
Paid:	8/04/16

Title information, description, dimensions and area of land are provided from data supplied by the Valuer General and shown where available.

111

Issuing Officer per **Monica Barone** *Chief Executive Officer*

 CERTIFICATE ENQUIRIES:

 Ph:
 9265 9333

 Fax:
 9265 9415

city of villages

PLANNING CERTIFICATE UNDER SECTION 149 (2) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 -ENVIRONMENTAL PLANNING & ASSESSMENT REGULATION, 2000, CLAUSES (1) - (2).

DEVELOPMENT CONTROLS

The following information must be read in conjunction with and subject to all other provisions of the environmental planning instruments specified in this certificate.

ZONING

Zoned Public Recreation – Sydney Regional Environmental Plan No 26

Only uses which the consent authority is satisfied are generally consistent with the zone objectives are permissible in this zone. However the consent authority may consent to other uses being carried beneath land used as a public recreation area.

The Objectives of this zone are:

- to establish public recreation areas which serve the needs of residents and workers within the City West and the adjoining suburbs; and
- to provide public access to all parts of the public domain, especially waterfront areas and escarpments; and
- to provide a variety of public areas and recreational opportunities; and
- to provide for facilities which accommodate or are ancillary to recreation opportunities relating to the use of the public domain, and
- in the Bays Precinct, in additional to the other objectives of this zone, to allow for the continued operation and development of Wentworth Park as a major public open space and recreational facility.

Uses permissible in the zone adjoining the public recreation zone are also permissible in the public recreation zone for a distance of 10 metres from the zone boundary if, in the opinion of the consent authority, it would allow a better relationship between the use of the land as a public recreation area and use of adjoining land would not decrease the total amount of land that will be available for use as a public recreation area.

Development for the purpose of roads, rail and light rail transport undertakings and facilities, fire stations and other emergency services, and public utility undertakings are permissible in any zone.

PROPOSED ZONING

This property is not affected by a draft zone.

LOCAL PLANNING CONTROLS

Sydney Development Control Plan 2012 (as amended) - (commenced 14.12.2012)

Leichhardt Local Environmental Plan 2000 (Gazetted 22.12.2000, as amended)

Leichhardt Development Control Plan 2000 (Adopted 18.04.2000, and in force 22.12.2000) -

Development Control Plan No. 35 – Exempt and Complying Development (Adopted 24.08.1999, as amended)

Development Control Plan No. 38 – Waste – Avoid, Reuse and Recycle (Adopted 26.10.1999, and in force 15.12.1999)

Development Control Plan No. 48 – Managing Activities on Footpaths and Street Verges (Adopted 23.07.2002, and in force 07.08.2002)

City of Sydney Contaminated Land Development Control Plan 2004 (in force on 28.06.2004)

City of Sydney Access Development Control Plan 2004 (in force on 28.06.2004)

City of Sydney Convenience Store Development Control Plan 2004 (date of commencement – 24.09.2004)

City of Sydney Boarding Houses Development Control Plan 2004 (date of commencement – 12.01.2005)

City of Sydney Notification of Planning and Development Applications Development Control Plan 2005 (commenced 18.05.2005)

City of Sydney Child Care Centres Development Control Plan 2005 (commenced 10.10.2005)

City of Sydney Adult Entertainment and Sex Industry Premises Development Control Plan 2006 (commenced 18.04.06)

City of Sydney Heritage Development Control Plan 2006 (commenced 02.01.07)

HERITAGE

State Heritage Register (Amendment To Heritage Act, 1977 Gazetted 2/4/99)

This property may be identified as being of state heritage significance, and entered on the State Heritage Register.

To confirm whether the site is listed under the Heritage Act 1977 a Section 167 Certificate should be obtained from the NSW Heritage Office by contacting the NSW Heritage office on (02) 9873 8500 for an application from or by downloading the application form from www.heritage.nsw.gov.au

STATE PLANNING INSTRUMENTS

Full copies of State Environmental Planning Policies are available online at www.planning.nsw.gov.au.

State Environmental Planning Policy No. 1 – Development Standards

This policy makes development standards more flexible. It allows Council to approve a development proposal that does not comply with a set standard where this can be shown to be unreasonable or unnecessary.

State Environmental Planning Policy No. 19 – Bushland in Urban Areas

This is a policy to protect and preserve bushland within certain urban areas, as part of the natural heritage or for recreational, educational and scientific purposes. This policy is designed to protect bushland in public open space zones and reservations, and to ensure that bush preservation is given a high priority when local environmental plans for urban development are prepared.

State Environmental Planning Policy No. 32 – Urban Consolidation

This policy implements the principles of urban consolidation, including the orderly, economic use and development of land. The policy enables urban land which is no longer required for the purpose for which it is currently zoned or used to be redeveloped for multi-unit housing and related development.

State Environmental Planning Policy No. 33 – Hazardous and Offensive Development

This policy aims to amend the definitions of hazardous and offensive industries; to render ineffective any environmental planning instruments not defining hazardous or offensive as per this policy; to control development of hazardous and offensive industries.

State Environmental Planning Policy No. 55 – Remediation of Land

This policy provides planning controls for the remediation of contaminated land. The policy states that land must not be developed if it is unsuitable for a proposed use because it is contaminated. If the land is unsuitable, remediation must take place before the land is developed. The policy makes remediation permissible across the State, defines when consent is required, requires all remediation to comply with standards, ensures land is investigated if contamination is suspected, and requires councils to be notified of all remediation proposals. To assist councils and developers, the Department, in conjunction with the Environment Protection Authority, has prepared Managing Land Contamination: Planning Guidelines.

State Environmental Planning Policy No. 64 – Advertising and Signage

This policy aims to ensure that signage (including advertising):

Is compatible with the desired amenity and visual character of an area, and

- Provides effective communications in suitable locations, and
- Is of a high quality design and finish.

To this end the policy regulates signage (but not content) under Part 4 of the Act and provides limited time consents for the display of certain advertisements. The policy does not apply to signage that is exempt development under an environmental planning instrument. It does apply to all signage that can be displayed with or without consent and is visible from any public place or reserve, except as provided by the policy.

This policy should be read in conjunction with the Sydney Local Environmental Plan 2005, the City of Sydney Signage and Advertising Structures Development Control Plan 2005 and State Environmental Planning Policy No. 60 where these apply.

State Environmental Planning Policy No. 65 – Design Quality of Residential Flat Buildings

This policy aims to improve the design quality of flats of three or more storeys with four or more self contained dwellings. The policy sets out a series of design principles for local councils to consider when assessing development proposals for residential flat development.

The policy also creates a role for an independent design review panel and requires the involvement of a qualified designer in the design and approval process.

State Environmental Planning Policy No.70 – Affordable Housing (Revised Schemes) (Gazetted 31.05.02)

The policy identifies that there is a need for affordable housing in the City of Sydney, describes the kinds of households for which affordable housing may be provided and makes a requirement with respect to the imposition of conditions relating to the provision of affordable housing (provided other requirements under the Act are met).

State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004

This Policy does not apply to land described in Schedule 1 (Environmentally sensitive land), or land that is zoned for industrial purposes, or land to which an interim heritage order made under the *Heritage Act 1997* by the Minister administering that Act applies, or land to which a listing on the State Heritage Register kept under the *Heritage Act 1997* applies.

The Policy aims to encourage the provision of housing (including residential care facilities) that will increase the supply and diversity of residences that meet the needs of seniors or people with a disability, and make efficient use of existing infrastructure and services, and be of good design.

State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004

Aims to ensure consistency in the implementation of the BASIX scheme throughout the State. This Policy achieves its aim by overriding provisions of other environmental planning instruments and development control plans that would otherwise add to, subtract from or modify any obligations arising under the BASIX scheme.

State Environmental Planning Policy (Major Development) 2005

This Policy aims to identify development of economic, social or environmental significance to the State or regions of the State so as to provide a consistent and comprehensive assessment and decision making process for that development. NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007

This Policy aims to provide for the proper management and development of mineral, petroleum and extractive material resources for the social and economic welfare of the State.

State Environmental Planning Policy (Temporary Structures and Places of Public Entertainment) 2007

This Policy aims to ensure that suitable provision is made for ensuring the safety of persons using temporary structures or places of public entertainment.

State Environmental Planning Policy (Infrastructure) 2007

This Policy aims to facilitate the effective delivery of infrastructure across the state. NB: This SEPP also contains exempt & complying provisions

State Environmental Planning Policy (Repeal of Concurrence and Referral Provisions) 2008

This Policy is an 'amending instrument' that removes or modifies referral and concurrence clauses within local environmental plans (LEPs), regional environmental plans (REPs) and State environmental planning policies (SEPPs).

State Environmental Planning Policy (Exempt and Complying Development Codes) 2008

This Policy Streamlines assessment processes for development that complies with specified development standards. The policy provides exempt and complying development codes that have State-wide application, identifying, in the General Exempt Development Code, types of development that are of minimal environmental impact that may be carried out without the

need for development consent; and, in the General Housing Code, types of complying development that may be carried out in accordance with a complying development certificate as defined in the Environmental Planning and Assessment Act 1979.

State Environmental Planning Policy (Affordable Rental Housing) 2009

Establishes a consistent planning regime for the provision of affordable rental housing. The policy provides incentives for new affordable rental housing, facilitates the retention of existing affordable rentals, and expands the role of not-for-profit providers. It also aims to support local centres by providing housing for workers close to places of work, and facilitate development of housing for the homeless and other disadvantaged people. NOTE: Does not apply to land at Green Square or at Ultimo Pyrmont, or on southern employment land.

State Environmental Planning Policy (Urban Renewal) 2010

The aims of this Policy are as follows:

(a) to establish the process for assessing and identifying sites as urban renewal precincts,

(b) to facilitate the orderly and economic development and redevelopment of sites in and around urban renewal precincts,

(c) to facilitate delivery of the objectives of any applicable government State, regional or metropolitan strategies connected with the renewal of urban areas that are accessible by public transport.

State Environmental Planning Policy (State and Regional Development) 2011

The aims of this Policy are as follows:

(a) to identify development that is State significant development,

(b) to identify development that is State significant infrastructure and critical State significant infrastructure,

(c) to confer functions on joint regional planning panels to determine development applications.

Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005

This plan applies to land within the Sydney Harbour Catchment, as shown edged heavy black on the Sydney Harbour Catchment Map, being part of the Sydney Region declared by order published in Gazette No 38 of 7 April 1989 at page 1841.

This plan has the following aims with respect to the Sydney Harbour Catchment: to ensure that the catchment, foreshores, waterways and islands of Sydney Harbour are recognised, protected and maintained: as outstanding natural asset, and as a public asset of national and heritage significance, for existing and future generations; to ensure a healthy, sustainable environment on land and water; to achieve a high quality urban environment; to ensure a prosperous working waterfront and an effective transport corridor, to encourage a culturally rich and vibrant place for people; to ensure accessibility to and along Sydney Harbour and its foreshores; to ensure the protection, maintenance and rehabilitation of watercourses, wetlands, riparian lands, remnant vegetation and ecological connectivity, to provide a consolidated, simplified and updated legislative framework for future planning.

OTHER MATTERS AFFECTING THE LAND AS PRESCRIBED BY SCHEDULE 4 -E. P. & A. REGULATION, 2000. CLAUSES (3) - (10)

(3) Complying Development

- (1) The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4),1.18(1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.
- (2) The extent to which complying development may not be carried out on that land because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4),1.18(1)(c3) and 1.19 of that Policy and the reasons why it may not be carried out under those clauses.

(3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.

Note: All Exempt and Complying Development Codes: Council does not have sufficient information to ascertain the extent of a land based exclusion on a property. Despite any statement preventing the carrying out of complying development in the Codes listed below, complying development may still be carried out providing the development is not on the land affected by the exclusion and meets the requirements and standards of *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.*

General Housing Code & Commercial and Industrial (New Buildings and Additions) Code

Complying development **may not** be carried out on the land under the General Housing Code & the Commercial and Industrial (New Buildings and Additions) Code if because of the provisions of clause 1.17A,1.18(1)(c3) & 1.19 (Land-based requirements for exempt and complying development) any of the following statements are **YES**

•	Clause 1.19(5)d. Land that is significantly contaminated land within the meaning of the Contaminated Land Management Act 1997. (Applies only to the Commercial and Industrial (New Buildings and Additions) Code.	NO
•	Clause 1.17A(d). Has been identified as a property that comprises, or on which there is, an item that is listed on the State Heritage Register under the <i>Heritage Act 1977</i> or that is subject to an interim heritage order under the <i>Heritage Act 1977</i> .	NO
•	Clause 1.17A(d) & 1.18(1)(c3). Has been identified as a property that comprises, or on which there is, a heritage item or draft heritage item.	NO
•	Clause 1.17A(c). Has been identified as being within a wilderness area (identified under the <i>Wilderness Act 1987</i> .	NO
•	Clause 1.17A(e) & 1.19(1)e or 1.19(5)f. Has been identified as land that is within an environmentally sensitive area or by an environmental planning instrument as being within a buffer area, a river front area, an ecologically sensitive area, environmentally sensitive land or a protected area	NO
•	Clause 1.19(1)a.or 1.19(5)a Has been identified as being within a heritage conservation area or a draft heritage conservation area.	NO
•	Clause 1.19(1)b or 1.19(5)b. Has been identified as being land that is reserved for a public purpose in an environmental planning instrument.	NO
•	Clause 1.19(1)c or 1.19(5)c. Has been identified as being on an Acid Sulfate Soils Map as being Class 1 or Class 2.	YES
•	Clause 1.19(1)d or 1.19(5)e. Has been identified as land that is subject to a biobanking agreement under part 7A of the threatened Species Conservation Act 1995 or a property vegetation plan under the Native Vegetation Act 2003.	NO
-	Clause 1.19(1)f or 1.19(5)g. Has been identified by an environmental planning instrument, a development control plan or a policy adopted by the Council as being or affected by a coastline hazard, a coastal hazard or a coastal erosion hazard.	NO
•	Clause 1.19(1)g or 1.19(5)h. Has been identified as being land in a foreshore area.	NO
•	Clause 1.19(1)h. Has been identified as land that is in the 25 ANEF contour or a higher ANEF contour. (Applies only to the General Housing Code)	NO
•	Clause 1.19(1)j or 1.19(5)i. Has been identified as unsewered land within a drinking water catchment.	NO
•	Clause 1.19(1)i. Has been identified as land that is declared to be a special area under the Sydney Water Catchment Management Act 1998.	NO

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code **may** be carried out on the land.

Subdivisions Code

Complying development under the Subdivisions Code may be carried out on the land.

Rural Housing Code

The Rural Housing Code does not apply to this Local Government Area.

General Development Code

Complying development under the General Development Code **may** be carried out on the land.

Demolition Code

Complying development under the Demolition Code **may** be carried out on the land.

(4) Coastal Protection Act, 1979

The council has not been notified by the department of public works that the land is affected by the operation of section 38 or 39 of the coastal protection act, 1979.

(4A) Certain information relating to beaches and coasts

(1) In relation to a coastal council an order has **not** been made under Part 4D of the coastal Protection Act 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land).

(2) In relation to a coastal council : Council has **not** been notified under section 55X of the Coastal Protection Act 1979 that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land)

(4B) Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

In relation to a coastal council : The owner (or any previous owner) of the land has not consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Note. "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

(5) Mine Subsidence District

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of the mine subsidence compensation act, 1961.

(6) Road Widening and/or Road Realignment affected by (a) Division 2 of Part 3 of the Roads act 1993 or (c) any resolution of council or other authority.

This land **is not** affected by road widening and/or road realignment under section 25 of the Roads Act, 1993 and/or resolution of Council or any other authority.

(6) Road Widening and/or Road Realignment Affected by (b) any environmental planning instrument.

This land **is not** affected by any road widening or road realignment under any planning instrument.

- (7) Council and other public authorities policies on hazard risk restrictions:
- (a) The land is affected by the City of Sydney Contaminated Land Development Control Plan 2004 adopted by the Council which may restrict the land if the potential for the risk of land contamination exists; and
- (b) The land **is not** affected by a policy adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to on planning certificate issued by Council, that restricts the development of the land because of the likelihood of land slip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk.

(7A) Flood related development controls information.

The development on this land or part of this land is not subject to flood related development controls.

(8) Land reserved for acquisition

No environmental planning instrument, or proposed environmental planning instrument applying to the land, provides for the acquisition of the land by a public authority, as referred to in section 27 of the Act.

(9) Contribution plans

The following Contributions Plans apply to properties within the City of Sydney local government area. Contributions plans marked **YES** may apply to this property:

•	Central Sydney Development Contributions Plan 2013 – in operation 9 th July 2013	NO
	Ultimo Pyrmont Section 94 Contributions Plan (approved C.S.P.C 15 th December 1994 and Council 19 th December 1994)	NO
	City of Sydney Development Contributions Plan 2006 – in operation 7 th April 2007	YES
	Redfern Waterloo Authority Contributions Plan 2006 – in operation 16th May 2007	NO
•	Redfern Waterloo Authority Affordable Housing Contributions Plan – in operation 16 th May 2007	

(9A) Biodiversity certified land

The land has not been certified as biodiversity certified land.

(10) Biobanking Agreement

Council has not been notified of a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995.

(11) Bush fire prone land

The land has not been identified as Bush fire prone land.

(12) Property vegetation plans

Not Applicable.

(13) Orders under Trees (Disputes Between Neighbours) Act 2006

Council has not been notified of an order which as been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land.

(14) Directions under Part 3A

Not Applicable.

(15) Site compatibility certificates and conditions for seniors housing

(a)The land to which the certificate relates is not subject to a current site compatibility certificate (seniors housing), of which Council is aware, in respect of proposed development on the land.

(b) The land to which the certificate relates is not subject to any condition of consent to a development application granted after 11 October 2007 required by State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004.

(16) Site compatibility certificates for infrastructure

The land to which the certificate relates is not subject to a valid site compatibility certificate (infrastructure), of which Council is aware, in respect of proposed development on the land.

(17) Site compatibility certificates and conditions for affordable rental housing

(a)The land to which the certificate relates is not subject to a current site compatibility certificate (affordable rental housing), of which Council is aware, in respect of proposed development on the land.

(b) The land to which the certificate relates is not subject to any terms of a kind referred to in clause 17(1) or 37(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

(18) Paper subdivision information

Not Applicable.

(19) Site verification certificates

The land to which the certificate relates is not subject to a valid site verification certificate of which Council is aware.

Note. The following matters are prescribed by section 59 (2) of the <u>Contaminated Land</u> <u>Management Act 1997</u> as additional matters to be specified in a planning certificate: (a) The land to which the certificate relates **is not** declared to be **significantly contaminated land** within the meaning of that act as at the date when the certificate is issued.

(b) The land to which the certificate relates **is not** subject to a **management order** within the meaning of that act as at the date when the certificate is issued.

(c) The land to which the certificate relates **is not** the subject of an **approved voluntary management proposal** within the meaning of that act at the date the certificate is issued.

(d) The land to which the certificate relates **is not** the subject of an **ongoing maintenance order** within the meaning of that act as at the date when the certificate is issued.

(e) As at the date when the certificate is issued, Council **has not** identified that a **site audit statement** within the meaning of that act has been received in respect of the land the subject of the certificate.

PLANNING CERTIFICATE SECTION 149(2) INFORMATION:

Information provided in accordance with planning certificate section 149 (2) has been taken from council's records and advice from other authorities but council disclaims all liability for any omission or inaccuracy in the information. Specific inquiry should be made where doubt exists.

PLANNING CERTIFICATE UNDER SECTION 149 (5) OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979

PLANNING CERTIFICATE SECTION 149 (5) ADVICE is current as at 12:00 noon two working days prior to the date of issue of this certificate. The following matters have been considered & details provided where information exists: easements in favour of council; parking permit scheme; heritage floor space restrictions; low-rental residential building; foreshore building line; tree preservation order.

Contaminated Land Potential:

Council records do not have sufficient information about the uses (including previous uses) of the land which is the subject of this section 149 certificate to confirm that the land has not been used for a purpose which would be likely to have contaminated the land. Parties should make their own enquiries as to whether the land may be contaminated.

Hazard Risk Restriction:

The City of Sydney Local Environmental Plan 2012 incorporates Acid Sulfate soil maps. Development on the land identified in those maps should have regard to Division 4 clause 7.16 of the LEP.

Construction Noise and View Loss Advice:

Intending purchasers are advised that the subject property may be affected by construction noise and loss or diminution of views as a result of surrounding development.

City of Sydney Tree Preservation Order 2004 (TPO)

This order applies to all land where South Sydney Local Environmental Plan 1998 applies and the City of Sydney Council or the Central Sydney Planning Committee is the relevant consent authority under the *Environmental Planning & Assessment* Act 1979. Contact Council's Contract and Asset Management section for more information.

Outstanding Notice & Order information

In relation to this property, there **is not** an outstanding Order or Notice of Intention to issue an Order relating to Fire Safety (being an Order or Notice of Intention to issue an Order of type 6, 10, 11 under Section 121B of the Environmental Planning and Assessment Act, 1979). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

In relation to this property, there **is not** an outstanding Order or Notice of Intention to issue an Order (being an Order or Notice of Intention to issue an Order of a type other than relating to fire safety). Further information about the Order or Notice of Intention to issue an Order may be obtained by applying for a certificate under Section 121ZP of the Environmental Planning and Assessment Act and Section 735A of the Local Government Act.

Residential & Visitor Parking Permit Schemes

The City of Sydney co-ordinates a Resident Permit Parking Scheme and a Visitor Permit Parking scheme. This property may be restricted from participating in either scheme. Eligibility may change after the date of this certificate, as parking supply and other traffic demands change. For more information contact Council's call centre on 9265 9333.

Sydney Ports Corporation Advice

Some land in the City of Sydney located in the vicinity of the White Bay, Glebe Island and Darling Harbour ports may be affected by noise from port operations.

Advice provided in accordance with planning certificate section 149 (5) is supplied in good faith. Council accepts no liability for the validity of the advice given. (see section 149 (6) of the Environmental Planning and Assessment Act, 1979).

For information regarding outstanding notices and orders a CERTIFICATE FOR OUTSTANDING NOTICES OF INTENTION AND/OR AN ORDER UNDER SECTION 735A OF THE LOCAL GOVERNMENT ACT, 1993 AND SECTION 121ZP OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT ACT, 1979 may be applied for at Sydney City Council.

Planning certificate section 149 (2), local planning controls are available for inspection at the following locations:

General Enquiries : Telephone: 02 9265 9333 Facsimile: 02 9265 9415

Town Hall House

Level 2, Town Hall House, 456 Kent Street, Sydney. 8am – 6pm, Monday - Friday

Glebe Customer Service Centre

Glebe Library, 186 Glebe Point Road, Glebe 9am – 5pm, Monday – Friday

Neighbourhood Service Centre Kings Cross

50 Darlinghurst Road, Potts Point 9am – 5pm, Monday – Friday 9am – 12pm, Saturday

Neighbourhood Service Centre Redfern

158 Redfern Street Redfern 9am-5pm Monday – Friday 9am – 12 Noon Saturday

Green Square Customer Service Centre

The Tote, 100 Joynton Avenue, Zetland 10am-6pm Monday – Friday

State planning controls are available for inspection at the following locations:

Sydney Harbour Foreshore Authority (former Sydney Cove Authority and Darling Harbour Authority), Level 6, 66 Harrington Street,

66 Harrington Street The Rocks.

Department of Planning & Infrastructure Information Centre 23-33 Bridge Street,

Sydney NSW 2000

Where planning certificate section 149 (5) matters are supplied, complete details are available by writing to: Chief Executive Officer, City of Sydney, G.P.O. Box 1591, Sydney, NSW 2000

End of Document

NSW WorkCover Records

SafeWork NSW 92-100 Donnison Street, Gosford, NSW, 2250 Locked Bag 2906, Lisarow, NSW, 2252 | Customer Service Centre 13 10 50 licensing@safework.nsw.gov.au

Our Ref: D16/5738390 Your Ref:

5 May 2016

Attention: Environmental Investigation Services PO Box 976 NORTH RYDE BC NSW 1670

Dear

RE SITE: 1-5 Wentworth Park Road, Glebe NSW 2037

I refer to your site search request received by SafeWork NSW on 28 April 2016 requesting information on Storage of Hazardous Chemicals for the above site.

Enclosed are copies of the documents that SafeWork NSW holds on record number 35/007125 relating to the storage of Hazardous Chemicals at the above-mentioned premises.

For further information or if you have any questions, please call our Customer Service Centre on 13 10 50 or email licensing@safework.nsw.gov.au

Yours sincerely,

Customer Service Officer Customer Service Centre - Operations SafeWork NSW WorkCover New South Wales, 400 Kent Street. Sydney 2000 , Tel: (02) 9370 5000 ALL MAIL TO LOCKED BAG 10. CLARENCE STREET, SYDNEY 2000

Reference 35/007125

DX 13067, MARKET ST. SYDNEY SCIENTIFIC SERVICES BRANCH Dangerous Goods Licensing ph. (02) 9370 5187 fax (02) 9370 6105

PUBLIC WORKS DEPT BOX 107 P O GLEBE 2037

30 December 1996

Dear Licensee

RE: NON RENEWAL OF LICENCE FOR THE KEEPING OF DANGEROUS GOODS

Our records indicate you previously held licence number 35/007125 for storage of dangerous goods at WENTWORTH ST & COWPER ST, GLEBE 2037. This licence has expired.

If dangerous goods are still being kept at this site the licence will need to be renewed. To renew the licence to 1997, please fully complete and return the enclosed application form. If extra depots need to be added to your licence, please include a plan stamped by an accredited consultant for these depots.

If the licence is not to be renewed, please provide the Chief Inspector of Dangerous Goods, WorkCover New South Wales with a signed statement giving the reason why the licence is no longer required *eg site sold, lease ended or storage removed*.

• Where the site has been sold or the lease ended, please inform the WorkCover New South Wales, of the date you sold/vacated the premises and whether you removed the dangerous goods before leaving. Where possible, please supply the new owner's name and address.

• If the depot has been removed from the site or is no longer used for storing dangerous goods, please advise the date the goods/depots were removed and by whom see specific information overleaf for underground tanks.

If you have any further queries, please contact your local WorkCover office or dangerous goods licensing staff ρ^L . Thank you for your assistance.

Yours faithfully

for Senior Licensing Clerk, Dangerous Goods encs

WORKCOVER NEW SOUTH WALES

DETAILS OF LICENCE FOR KEEPING

DANGEROUS GOODS ON 30 DECEMBER 1996

Licence Number 35/007125

Expiry Date 15/08/90

Licensee Details

Licensee PUBLIC WORKS DEPT

Trading name

Postal Address BOX 107 P O, GLEBE 2037

Licensee Contact

Site Details

Premises Licensed to Keep Dangerous Goods WENTWORTH ST & COWPER ST GLEBE 2037

Nature of Site PRIVATE DWELLING Supplier

Emergency Contact ph.

Site staffing

Details of Depots

Depot No	. Depot Type	Goods Stored in Depot	Qty
1	ROOFED STORE	Class 3	1000 L

ME 37 FORM B Page 1

1

Onca

INFLAMMABLE LIQUID ACT, 1915 (AS AMENDED)

Applicat Registration of Premises or Store Licence under Division or for the transfer alteration endment of any such Registration or Licence, for the keeping of Inflammable Liquid and/or Dangerous Goods, in accorda ... with the provisions of the Inflammable Liquid Act, 1915 (as amended), for the ensuing year.

7125

Register No.

SEE PAGE 4 FOR DETAILS OF FEES PAYABLE AND DISTANCES FROM PROTECTED WORKS

DIRECTIONS

Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Box R216, Royal Exchange Sydney, N.S.W. 2000 and must be accompanied by the prescribed fee.
 Registration of Premises - For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral oil and 100 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil.
 Store Licence, Div. A - For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or Dangerous Goods of Classes 1, 2 and 9.1
 Store Licence, Div. B (Fee See Regulation 7) - For quantities exceeding 4,000 gallons of mineral spirit, ard/or Dangerous Goods of Classes 1

Store Licence, Div. B (Fee See Regulation 7) - For quantities exceeding 4,000 gallons of mineral spirit, ard/or Dangerous Goods of Classes 1 and 2, and/or Dangerous Goods of Class 3.

For the keeping of Dangerous Goods of Classes 3 and/or 4.

oscrete

					$\frac{1}{2}$	1	4/00	Ks	1) o P	1	
1. Name	e of occupier inclu	uding full christia	n names.		de <u>o</u>	<u> </u>				/		
2. Jrgd	ing Manual (any)			X. P.	W C	60	1. 2.	leer	ric	a/i	lock	1 cho
3. Loca are s	ality of the premis situated	es in which the d	epot or depots	No. or N Street	Name	ntia	Jorn	L ø	Lou	spe	r l	0 T S
			0	Town_	0	le	Se 1				0	- 0
4. Post	al address		P.	Ba	×10-	76	100	4.		Postcode	20-	3)
5. Occ	upation			_0	007	<u>k</u>	lait	er.		1101	10	
6. Nat	ure of premises (d	welling, garage et	c.)		VIAUS	5 1.51	ANC	Q (2	1014	TA	°P	one tim
7. Part	iculars of constru	ction of depots	and maximum	quantities o	of inflamm	able liqu	id and/or	Dangero	us Goods	to be kep	otatany	
			PLEAS	E ATTACH	PLAN OF	PREMI	SES					
	Co	nstruction of dep	oots*	Inflamma	able liquid			Danger	ous good	ls		
Depot No.	Walls	Roof	Floor	Mineral spirit	Mineral oil	Class 1 c alleos	Class 2	Class 3	Class 4 cu ft	Class 5A water gal	Class 5B water ga	Class 9 gallons

1000

corrote

61

6 RE 7 NO 8 (Date) 15 e 75 9 10 Receipt No. 10 *If product is kept in tanks describe depots as underground or aboveground tanks Signature of applicant 高·信、LEWIS MANA ORKSHOP; Date of application _ 19 H PUBLIC WORKS. DEPAKTMEN. CEBTIFICATE OF INSPECTION being an Inspector under the Inflammable Effuid Act, 1975 (as amended), do hereby certify that the premises or store herein referred to and described is suitable with regard to its situation and construction for the safe keeping of inflammable liquid and/or dangerous goods in quantity and nature specified. Signature of Inspector 00 0 Rlace PLEASE TURN OVER 5 Date

ME 35 INSPECTION RECORD Licence No Licensee: S.W Pour Workshops (Fleetric Address: CAR Couper & Wentwork lebe 3000 Liter M.S. Mo Storage licensed: Sketch of Premises (Dimensions of depot and distance of same from adjoining "protected works" to be shown). GOOT. GARAGE LANE WAY Da sicle eetr cal ONTIO

Inspected Initials Requisitions made or state of depot 9.4-75 HB H.

M 5388 V. C. N. Blight, Government Printer

Appendix B: Borehole Logs

JK Geotechnics

GEOTECHNICAL AND ENVIRONMENTAL ENGINEERS

BOREHOLE LOG

Borehole No. 1 1/2

BOREHOLE LOG

Borehole No. 1 2/2

Job No. 2931 Date: 20-4-16	19ZH	WURTE	Meth	iod: SPIRAL AUGER JK308	, ULTIMO	R.L. Surface: ≈ 3.1m Datum: AHD				
ord samPLES	d Tests	oth (m)	princ cog fied ssiftcation	Jed/Checked by: N.C./A.J.H	sture odition/ athering	ength/ . Density	nd netrometer adrigs (kPa.)	Remarks		
	N = 10 4,6,4	Del		SILTY CLAY: medium to high plasticity, red brown, brown and orange brown. SILTY CLAY: high plasticity, light	MC>PL	F VSt	50 100 80 60			
		8- 9- 10- 11- 12- 13-								

BOREHOLE LOG

Borehole No. 2 1/2

Job Date	No. 29 : 20-4	9319ZH -16			Meth	od: SPIRAL AUGER JK308 ged/Checked by: N.C./A.J.H.	R.L. Surface: ≈ 3.6m Datum: AHD				
Groundwater Record	ES U50 DB DS DS	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
		N = 12 3,5,7	0 1 			FILL: Silty clay, low to medium plasticity, brown, with roots and root f bres. FILL: Sand, fine to medium grained, light brown and brown, trace of ash, with clay fines. FILL: Silty clay, medium to high plasticity, brown, red brown and dark brown, with fine to coarse grained sandstone gravel, fine grained sand, ash and roots.	MC <pl M MC>PL</pl 			APPEARS POORLY COMPACTED	
ON DMPLE ION	т	N = 3 1,2,1 N = 10 2,3,7	- 2- - - 3-			FILL: Silty sand, fine to coarse grained, brown and grey, with clay bands and sandstone gravel bands, trace of ash and timber fragments.	M			APPEARS MODERATELY COMPACTED	
•		N = 0 0,0,0	- - 4- -		SM	SILTY SAND: fine to medium grained, dark grey and grey, with clay fines, trace of timber and shell fragments and organic silty clay bands.	M W	VL	-	ESTUARINE	
		N = 0 0,0,0	5 - - - 6 -		CL-CH	SILTY CLAY: medium to high plasticity, grey, with sand, trace of timber and shell fragments.	MC>PL	VS-S	40 30 20 20		

BOREHOLE LOG

Borehole No. 2 2/2

Job No. 293 Date: 20-4-1	19ZH 6		Me	thod: SPIRAL AUGER JK308 gged/Checked by: N.C./A.J.I	R.L. Surface: ≈ 3.6m Datum: AHD			
Groundwater Record USO DB SAMPLES DS	Field Tests	Depth (m)	Graphic Log Unified	DESCRIPTION	Maisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	N - 42		CI	SILTY CLAY: high plasticity, red brown, light grey and orange brown. SILTY CLAY: high plasticity, light	MC>PL	F	60	
	N = 13 1,3,10	Í		grey, trace of sand.		1.4	70 100	
		-	<u>SI</u>	SAND: fine to coarse grained, light \grey, with silt fines.		MD	60 60	
		9- - - - - - - - - - - - - - - - - - -						

BOREHOLE LOG

Borehole No. 3 1/2

Job N Date:	lo. 29 20-4-	319ZH 16			Meth	od: SPIRAL AUGER JK308		R	.L. Surfa atum: A	ace: ≈ 4.7m		
			Logged/Checked by: N.C./A.J.H.									
Groundwater Record	DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
			0			FILL: Silty clay, low to medium plasticity, brown, with roots and root	М			GRASS COVER		
		N = 6 5,4,2				FILL: Sand, fine to medium grained, grey, with fine to coarse grained igneous gravel.	MC>PL		240 150 120	TO MODERATELY COMPACTED		
			1			plasticity, red brown, orange brown, brown and dark grey, with fine to coarse grained sandstone gravel						
		N - F				ash, brick and glass fragments and γ fine to medium grained ironstone			100			
ON		12,2,3	- 2 -			as above, but with sandstone gravel bands.			100 80 150			
									-			
		N - 6							-			
		N = 6 3,3,3	3-						-			
			4-						-			
		N = 3 2,1,2				FILL: Sandy clay, low to medium plasticity, light brown and light grey, fine to coarse grained sand, with fine to coarse grained sandstone and			-	APPEARS POORLY COMPACTED		
			5-		CL-CH	ironstone gravel. SILTY SANDY CLAY: medium to high plasticity, light grey	MC>PL	(S)		ESTUARINE		
					SP	SAND: fine to medium grained, dark grey, with silt fines, trace of root fibres, shells and fine to medium grained quartz gravel.	W	VL	-			
		N = 1 0,0,1	6-						-			
									-			
		1	7		SM	SILTY SAND: as below						

BOREHOLE LOG

Borehole No. 3 2/2

Job No. 29319 Date: 20-4-16	θZH		Meth	od: SPIRAL AUGER JK308		R.L. Surface: ≈ 4.7m Datum: AHD				
Groundwater Record 150 150 150 150 150 150 150 150 150 150	Field Tests	Jepth (m) Graphic Log	Unified Classification	jed/Checked by: N.C./A.J.H.	Moisture Condition/ Neathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks		
N O	= 14		SM	SILTY SAND: fine to medium grained, grey, trace of shells and root fibres. SILTY SAND: fine to coarse grained, light grey, trace of clay fines.	Ŵ	VL MD				
		9- 10- 11- 12- 13- 13-								

BOREHOLE LOG

Borehole No. 4 1/2

Job N Date:	o. 293 20-4-1	19ZH 6			Meth	od: SPIRAL AUGER JK308	R.L. Surface: ≈ 4.5m Datum: AHD																																									
	0	_			Logg																																											
Groundwater Record	USO SAMPLES DS SAMPLES	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks																																						
			0		2.47	ASPHALTIC CONCRETE: 50mm.t	М		-	APPEARS																																						
		N = 5 2,2,3	1-			grained, grey, tine to coarse grained igneous gravel. FILL: Silty clay, medium to high plasticity, red brown, light brown and brown, with fine to coarse grained ironstone and sandstone gravel, trace of ash and plastic glass and timber	MC>PL		280 120 120 120 180	POORLY COMPACTED																																						
						fragments. FILL: Gravelly sand, fine to coarse grained light brown brown and grav			-	-																																						
ON DMPLET- ION		N = 18 2,6,12	2-			fine to coarse grained sandstone, ironstone and igneous gravel, with clay nodules, trace of ash, plastic and brick fragments.				APPEARS WELL COMPACTED																																						
OMPLET-		N = 15 7,7,8	3-						-																																							
-							w		-																																							
			4-	4-	4	4	4	4.	4.	4.	4.	4.	4	4.	4.	4 -	4 -	4 -	4 -	4 -	4-	4-	4 -	4-	4 -	4-	4-	4-	4-	4-	4-	4 -	4 -	4-	4-	4 -	4 -	4-	4-	4-	4-	4-	SM	SILTY SAND: fine to coarse grained, grey and light brown, trace of root f bres and fine grained ironstone gravel.	w	(VL)	-	ESTUARINE
		N = 2 3,2,0	5-		СН	SILTY CLAY: high plasticity, dark grey, trace of root fibres.	MC>PL	VS-S	30 20 10 10																																							
		N = 0 0,0,0	6-			as above, but with occasional bands of fine to coarse grained sand (up to ≈50mm.t).			20 20 30																																							

COPYRIGHT

BOREHOLE LOG

Borehole No. 4 2/2

Job No. 29319ZH Date: 20-4-16	ł	Meth	nod: SPIRAL AUGER JK308 ged/Checked by: N.C./A.J.H.	R.L. Surface: ≈ 4.5m Datum: AHD				
Field Tests	Depth (m) Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
		CH SM	SILTY CLAY: high plasticity, dark	MC>PL	VS VL			
N = 0 0,0,0			grey, with shell fragments and fine					
	8- 9- 10- 10- 11- 12- 13- 13-		Agrey, trace of root fibres and shells. END OF BOREHOLE AT 7.65m					

ENVIRONMENTAL INVESTIGATION SERVICES

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

ENVIRONMENTAL INVESTIGATION SERVICES

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No. 6 1/1

Environmental logs are not to be used for geotechnical purposes

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No. 8 1/1

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Borehole No. 9 1/1

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Job I Date	No. E29 : 20/4/1	9319K 16			Meth	od: EZIPROBE ged/Checked by: G.F./A.K.		R	.L. Surfa atum:	nce: N/A
Groundwater Record	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	F -		0			ASPHALTIC CONCRETE: 50mm.t	D		-	ROADBASE
			0.5 -			FILL: Sandy clay, low plasticity, brown, trace of ash and slag, fine to coarse grained sandstone and ironstone gravel.	MC <pl< td=""><td></td><td>-</td><td></td></pl<>		-	
			1-			FILL: Silty clay, medium plasticity, brown, grey and light brown, trace of ash and slag, fine to coarse grained ironstone, sandstone and igneous gravel.			-	
			<u>1.5</u> 2- 2.5 -			END OF BOREHOLE AT 1.50m				WATERLOO MEMBRANE SAMPLER INSTALLED TO APPROXIMATEL 1.0m BELOW GROUND LEVEL (21/4/16)

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Job No. E29319K Method: EZIPROBE R.L. Surface: Date: 20/4/16 Datum: Logged/Checked by: G.F./A.K.							ace: N/A			
Groundwater Record	ES ASS AAB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLET			0		-	ASPHALTIC CONCRETE: 50mm.t FILL: Sandy gravel, fine to medium grained, grey and dark grey, ash and	M			
			0.5 -			FILL: Gravelly sandy clay, low plasticity, brown, dark grey and light brown, fine to coarse grained sandstone, ironstone and igneous gravel, trace of ash and slag.	MC <pl< td=""><td></td><td></td><td></td></pl<>			
			- 1.5 2- 2.5 -			END OF BOREHOLE AT 1.50m				GAS MONITORING WELL INSTALLED A DEPTH OF APPROXIMATELY 1.1m. CLASS 18, 50mm DIAMETER MACHINE SLOTTE PVC FROM 1.1m T 0.4m, CASING FROM 0.4m TO 0. 2mm FILTER SANI PACK FROM 1.1m 0.4m. BENTONITE SEAL FROM 0.4m 0.1m, BACKFILLE WITH CUTTINGS T SURFACE, COMPLETED WITH STEEL GATIC COVER

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

Job I	No. E29	9319K			Meth	od: EZIPROBE		R	.L. Surfa	ace: N/A
Date	. 20/4/1	U			Logg	ged/Checked by: G.F./A.K.			atum.	
Groundwater Record	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON OMPLET	1. 1.		0	$\times\!\!\times\!\!\times$		ASPHALTIC CONCRETE: 80mm.t FILL: Silty gravel, fine to medium	D		-	ROADBASE
ION			0.5 -			grained, igneous, grey and brown. FILL: Silty clay, medium plasticity, brown, trace of ash and slag, fine to medium grained ironstone and sandstone gravel, and fine to medium grained sand.	MC=PL			
			1-			FILL: Gravelly sandy clay, low plasticity, light brown, grey and dark grey, fine to medium grained sandstone and ironstone gravel, trace of ash and slag.	MC <pl< td=""><td></td><td></td><td></td></pl<>			
			- 1.5 			END OF BOREHOLE AT 1.50m				

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

CONSULTING ENVIRONMENTAL ENGINEERS

ENVIRONMENTAL LOG

EXPLANATORY NOTES – ENVIRONMENTAL LOGS

INTRODUCTION

These notes have been provided to supplement the environmental report with regards to drilling and field logging. Not all notes are necessarily relevant to all reports. Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and manmade processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies involve gathering and assimilating limited facts about these characteristics and properties in order to understand the ground on a particular site under certain conditions. These conditions are directly relevant only to the ground at the place where, and time when, the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, the SAA Site Investigation Code. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached Unified Soil Classification Table qualified by the grading of other particles present (e.g. sandy clay) as set out below (note that unless stated in the report, the soil classification is based on a qualitative field assessment, not laboratory testing):

Soil Classification	Particle Size
Clay	less than 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2mm
Gravel	2 to 60mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose	less than 4
Loose	4 – 10
Medium dense	10 – 30
Dense	30 – 50
Very Dense	greater than 50

Cohesive soils are classified on the basis of strength (consistency) either by use of hand penetrometer, laboratory testing or engineering examination. The strength terms are defined as shown in the following table:

Classification	Unconfined Compressive Strength kPa
Very Soft	less than 25
Soft	25 – 50
Firm	50 – 100
Stiff	100 – 200
Very Stiff	200 – 400
Hard	Greater than 400
Friable	Strength not attainable – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'Shale' is used to describe thinly bedded to laminated siltstone.

DRILLING OR EXCAVATION METHODS

The following is a brief summary of drilling and excavation methods currently adopted by the Company, and some comments on their use and application. All except test pits and hand auger drilling require the use of a mechanical drilling rig.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descend into the pit. The depth of penetration is limited to approximately 3m for a backhoe and up to 6m for an excavator. Limitations of test pits include problems associated with disturbance and difficulty of reinstatement; and the consequent effects on nearby structures. Care must be taken if construction is to be carried out near test pit locations to either properly re-compact the backfill during construction, or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Premature refusal of the hand augers can occur on a variety of materials such as fill, hard clay, gravel or ironstone, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock fragments. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (e.g. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, an NMLC triple tube core barrel, which gives a core of about 50mm diameter, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as CORE LOSS. The locations of losses are determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the top end of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" – Test F3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

- In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as: N = 13 (4, 6, 7)
- In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as: N>30 (15, 30/40mm)

The results of the test can be related empirically to the engineering properties of the soil. Occasionally, the drop hammer is used to drive 50mm diameter thin walled sample tubes (U50) in clays. In such circumstances, the test results are shown on the borehole logs in brackets.

A modification to the SPT test is where the same driving system is used with a solid 60 tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as "Nc" on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The attached explanatory notes define the terms and symbols used in preparation of the logs.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than "straight line"

variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open;
- A localised perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after stabilising at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (e.g. bricks, concrete, plastic, slag/ash, steel etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably determine the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classifications and rocks strengths indicated on the environmental logs unless noted in the report.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, EIS should be notified immediately.

GRAPHIC LOG SYMBOLS FOR SOIL AND ROCKS

	(Excluding part	Field Identi icles larger	ification Proceed than 75 μ m and ated weights)	lures 1 basing fracti	ons on	Group Symbols a	Typical Names	Information Required for Describing Soils		Laboratory Classification Criteria							
	coarse than te	n gravels le or no ines)	Wide range i amounts o sizes	n grain size a of all interme	nd substantial diate particle	G#	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name; indicate ap- proximate percentages of sand		grain sizc r than 75 s follows: use of	$C_{\rm U} = \frac{D_{60}}{D_{10}} \text{Greater} \\ C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \text{I}$	than 4 Setween I and 3					
	vels alf of arger eve siz citch		Predominant with some	Predominantly one size or a range of sizes with some intermediate sizes missing		Predominantly one size or a range of sizes with some intermediate sizes missing		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	and gravel; maximum size; angularity, surface condition, and hardness of the coarse		from f smalle ified at uiring	Not meeting all gradation	on requirements for GW			
s rial is size ^b	Gra c than h cction is 4 mm s	s with es cciable nt of s)	Nonplastic fines (for identification pro- cedures see ML below)		GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses		id sand raction are class <i>W</i> , <i>SP</i> <i>M</i> , <i>SC</i> cases req	Atterberg limits belo "A" line, or PI le than 4	W Above "A" line with PI between 4 and 7 are						
of mate	Mor	E Source CL below)		on procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	ntificatio	ravel an f fines (f ed soils c, GP, S f, GC, S derline ual sym	Atterberg limits abov "A" line, with PI greater than 7	requiring use of dual symbols						
Coarse-gra e than half rr than 75 µ	coarse r than ze	an sands le or no ines)	Wide range in grain size: amounts of all inter sizes		nd substantial diate particle	S₩	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics y Example: Silty sond, gravelly; about 20% hard angular gravel par-	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20%		moisture conditions and e drainage characteristics Example: Silty sand, gravelly; about 20% b		ntages of g recentage of oarse grain 2% GM Bor	$C_{\rm U} = \frac{D_{60}}{D_{10}} \qquad \text{Greater} \\ C_{\rm C} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \qquad \text{B}$	than 6 etween 1 and 3
More large	nds nalf of smallei ieve si	Clea	Predominantl with some	y one size or a intermediate	range of sizes sizes missing	SP	Poorly graded sands, gravelly sands, little or no fines	ticles 12 mm maximum size; rounded and subangular sand	ven un	percer on pe size) c han 5 %	Not meeting all gradati	on requirements for SW					
nallest p	c than b ction is 4 mm s	Nonplastic fines (for cedures, see ML		nes (for ident see ML below)	ification pro-	SM	Silty sands, poorly graded sand- silt mixtures	15% non-plastic fines with low dry strength; well com- pacted and moist in place:	ns as gi	termine curve pending mm sieve Less th More t	Atterberg limits belo "A" line or PI less that 5	w Above "A" line with PI between 4 and 7 are					
t the sr	Moi	Sand fi (appre amou	Plastic fines (f	or identification procedures, ow)		tic fines (for identification procedures, ee CL below)		sc	Clayey sands, poorly graded sand-clay mixtures	anuviai sano; (3 M)	fractio	ڡٞٚڡ	Atterberg limits belo "A" line with a greater than 7	PI requiring use of dual symbols			
noq	Identification	Procedures	on Fraction Sm	alter than 380	µm Sieve Size			2	the								
aller e size is a			Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				identifying	60 50 Comparin	g soils at equal liquid limit						
soils trial is <i>sm</i> e size 5 μm siev	s and clay luid limit		None to slight	Quick to slow	None	ML	Inorganic silts and very fine sands, rock flour, silty or claycy fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	curve in	x 40 Toughness	s and dry strength increase	1 un					
grained s f of mate 5 μm siev (The 7	Site	2	Mcdium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other perti- nent descriptive information, and symbol in parentheses	grain size	Dasticit 20		OH					
hall hall			Slight to medium	Slow	Slight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor-	Use	10 CL	OL OL	MH					
ore than the	d clays limit than		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	and remoulded states, moisture and drainage conditions			20 30 40 50 60	70 80 90 100					
W	and	20	High to very high	None	High	CH	Inorganic clays of high plas- ticity, fat clays	Example:			Liquid limit						
	Silte		Medium to high	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of fine sand; numerous vertical		for labora	tory classification of	fine grained soils					
H	lighly Organic Se	oils	Readily iden spongy feel	and frequent	lour, odour, ly by fibrous	Pt	Peat and other highly organic soils	root holes; firm and dry in place; locss; (ML)									

Note: 1 Soils possessing characteristics of two groups are designated by combinations of group symbols (eg. GW-GC, well graded gravel-sand mixture with clay fines). 2 Soils with liquid limits of the order of 35 to 50 may be visually classified as being of medium plasticity.

LOG SYMBOLS

-

LOG COLUMN	SYMBOL	DEFINITION	
		Standing water level. Time delay following c	ompletion of drilling may be shown.
Groundwater Record	- C -	Extent of borehole collapse shortly after drilli	ng.
		Groundwater seepage into borehole or exca	vation noted during drilling or excavation.
Samples	ES U50 DB DS ASB ASS SAL	Soil sample taken over depth indicated, for e Undisturbed 50mm diameter tube sample tak Bulk disturbed sample taken over depth indic Small disturbed bag sample taken over depth Soil sample taken over depth indicated, for a Soil sample taken over depth indicated, for a Soil sample taken over depth indicated, for s	nvironmental analysis. ken over depth indicated. ated. h indicated. sbestos screening. cid sulfate soil analysis. alinity analysis.
	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed be show blows per 150mm penetration. 'R' as	tween depths indicated by lines. Individual noted below.
Field Tests	Nc = 5 7 3 R	Solid Cone Penetration Test (SCPT) performed b figures show blows per 150mm penetration for 'R' refers to apparent hammer refusal within the	between depths indicated by lines. Individual 60 degree solid cone driven by SPT hammer. a corresponding 150mm depth increment.
	VNS = 25	Vane shear reading in kPa of Undrained Shea	ar Strength.
Moioturo		Moisture content estimated to be greater that	n plastic limit
(Cohesive Soils)	MC≈PL	Moisture content estimated to be approximated	tely equal to plastic limit.
	MC <pl< td=""><td>Moisture content estimated to be less than p</td><td>lastic limit.</td></pl<>	Moisture content estimated to be less than p	lastic limit.
(Cohesionless)	D	DRY – Runs freely through fingers.	water visible on soil surface
	W	WET – Free water visible on soil surfa	Ce.
Strength (Consistency)	VS S	VERY SOFT – Unconfined compressive str SOFT – Unconfined compressive str	ength less than 25kPa ength 25-5 0kPa
Cohesive Soils	F	FIRM – Unconfined compressive str	ength 50-1 00kPa
	St	STIFF – Unconfined compressive str	ength 100- 200kPa
	VSt	VERY STIFF – Unconfined compressive str	ength 200- 400kPa
	()	Bracketed symbol indicates estimated consist tests.	ency based on tactile examination or other
Density Index/ Relative Density	VL	Density Index (ID) Range (%) Very Loose <15	SPT ' N' Value Range (Blows/300mm) 0-4
(Cohesionless	L	Loose 15-35	4-10
001107	MD	Medium Dense 35-65	10-30
	D	Dense 65-85	30-50
	VD	Very Dense >85 Brackated symbol indicates estimated densit	>50
Hand	300		
Penetrometer Readings	250	Numbers indicate individual test results in ki material unless noted otherwise	a on representative undisturbed
Remarks	'V' bit	Hardened steel 'V' shaped bit.	
	'TC' bit	Tungsten carbide wing bit.	
	T ₆₀	Penetration of auger string in mm under stati hydraulics without rotation of augers.	c load of rig applied by drill head

LOG SYMBOLS CONTINUED

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the bedding. The test procedure is described by the International Journal of Rock Mechanics, Mining and Geomechanics Abstract Volume 22, No 2, 1985.

TERM	SYMBOL	ls (50) MPa	FIELD GUIDE
Extremely Low:	EL	0.03	Easily remoulded by hand to a material with soil properties.
Very Low:	VL		May be crumbled in the hand. Sandstone is "sugary" and friable.
Low:	L	0.1	A piece of core 150 mm long x 50mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium Strength:	м	0.3	A piece of core 150 mm long x 50mm dia. can be broken by hand with difficulty. Readily scored with knife.
High:	н	3	A piece of core 150 mm long x 50mm dia. core cannot be broken by hand, can be slightly scratched or scored with knife; rock rings under hammer.
Very High:	νн	10	A piece of core 150 mm long x 50mm dia. may be broken with hand-held pick after more than one blow. Cannot be scratched with pen knife; rock rings under hammer.
Extremely High:	EH		A piece of core 150 mm long x 50mm dia. is very difficult to break with h and-held hammer . Rings when struck with a hammer.

ROCK STRENGTH

ABBREVIATION	DESCRIPTION	NOTES
Be CS	Bedding Plane Parting Clay Seam	Defect orientations measured relative to the normal to (i.e. relative to horizontal for vertical holes)
J	Joint	
Р	Planar	
Un	Undulating	
S	Smooth	
R	Rough	
IS	Iron stained	
XWS	Extremely Weathered Seam	
Cr	Crushed Seam	
60t	Thickness of defect in millimetres	

Appendix C: Laboratory Reports & COC Documents

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

145327

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention: Geoff Fletcher

Sample log in details:

Your Reference:E29319K, Wentworth Park SouthNo. of samples:43 soilDate samples received / completed instructions received21/04/2016This report supersedes the previous report R00 due to an amendment to client sample ID (ELS #34).

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 29/04/16
 / 30/05/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
	-					
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	85	84	93	86	85
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	145327-16	145327-19	145327-23	145327-25	145327-28
Your Reference		BH6	BH7	BH8	BH9	BH10
Depth		0.0-0.2	0.0-0.2	0.5-0.7	0.0-0.2	0.25-0.5
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	92	85	83	85	82

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference	UNITS	145327-30 BH11	145327-32 BH12	145327-34 BH13	145327-36 BH14	145327-39 BH15
Depth Date Sampled Type of sample		0.05-0.3 20/04/2016 soil	0.25-0.5 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.5-0.8 20/04/2016 soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	83	91	89	87	88

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	145327-42	145327-43
Your Reference		DupGFS3	TBS
	-		
Depth			
Date Sampled		20/04/2016	20/04/2016
Type of sample		soil	soil
Date extracted	-	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016
TRHC6 - C9	mg/kg	<25	<25
TRHC6 - C10	mg/kg	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	94

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
Depth	-	0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	_	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	_	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC 10 - C14	ma/ka	<50	<50	<50	<50	<50
	ma/ka	<100	<100	<100	<100	<100
	mg/kg	<100	280	320	<100	<100
	mg/kg	<100	200	520	<100	<100
IRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	210	270	<100	<100
TRH>C34-C40	mg/kg	<100	410	410	<100	<100
Surrogate o-Terphenyl	%	85	82	85	83	84
		Γ	I	Γ	Γ	Γ
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	145327-16	145327-19	145327-23	145327-25	145327-28
Your Reference		BH6	BH7	BH8	BH9	BH10
Depth		0.0-0.2	0.0-0.2	0.5-0.7	0.0-0.2	0.25-0.5
DateSampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	450	100	150
TRHC29 - C36	mg/kg	100	<100	720	230	160
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	120	110	1,000	270	270
TRH>C34-C40	mg/kg	<100	<100	510	190	110
Surrogate o-Terphenyl	%	91	89	94	83	85

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
	-					
Depth		0.05-0.3	0.25-0.5	0.0-0.2	0.0-0.2	0.5-0.8
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	130	220	<100	<100	<100
TRHC29 - C36	mg/kg	120	160	<100	130	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	220	340	<100	160	<100
TRH>C34-C40	mg/kg	<100	<100	<100	110	<100
Surrogate o-Terphenyl	%	86	85	81	82	82

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	145327-42
Your Reference		DupGFS3
	-	
Depth		
Date Sampled		20/04/2016
Type of sample		soil
Date extracted	-	22/04/2016
Date analysed	-	23/04/2016
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC 29 - C 36	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	85

PAHs in Soil						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
Depth Date Sampled Type of sample		0.1-0.2 20/04/2016 soil	0.1-0.2 20/04/2016 soil	0.1-0.2 20/04/2016 soil	0.2-0.3 20/04/2016 soil	0.7-1.0 20/04/2016 soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.5	<0.1	0.2	0.2	1.5
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6
Fluoranthene	mg/kg	1.3	0.2	0.5	0.2	4.5
Pyrene	mg/kg	1.4	0.2	0.6	0.2	4.8
Benzo(a)anthracene	mg/kg	1	0.1	0.3	0.1	3.4
Chrysene	mg/kg	0.8	0.1	0.3	0.1	2.8
Benzo(b,j+k)fluoranthene	mg/kg	1	0.2	0.5	<0.2	4.8
Benzo(a)pyrene	mg/kg	0.87	0.1	0.3	0.05	3.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7	0.1	0.2	<0.1	2.2
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.3
Benzo(g,h,i)perylene	mg/kg	0.5	0.1	0.2	<0.1	1.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.3	<0.5	<0.5	<0.5	4.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.3	<0.5	<0.5	<0.5	4.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.3	<0.5	0.5	<0.5	4.5
Total Positive PAHs	mg/kg	8.6	1.3	3.3	0.90	30
Surrogate p-Terphenyl-d14	%	99	99	96	102	105

PAHs in Soil						
Our Reference:	UNITS	145327-16	145327-19	145327-23	145327-25	145327-28
Your Reference		BH6	BH7	BH8	BH9	BH10
Depth Date Sampled Type of sample		0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.5-0.7 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.25-0.5 20/04/2016 soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.5
Acenaphthylene	mg/kg	0.3	0.3	0.3	0.2	0.7
Acenaphthene	mg/kg	<0.1	0.1	<0.1	<0.1	0.1
Fluorene	mg/kg	0.2	0.3	<0.1	<0.1	0.2
Phenanthrene	mg/kg	2.0	4.3	2.3	1.9	4.1
Anthracene	mg/kg	0.7	0.9	0.7	0.6	1.2
Fluoranthene	mg/kg	2.9	7.6	6.8	5.0	9.2
Pyrene	mg/kg	3.0	7.0	6.9	4.9	9.2
Benzo(a)anthracene	mg/kg	2.1	3.1	4.9	3.0	6.0
Chrysene	mg/kg	1.9	2.7	4.4	2.7	4.8
Benzo(b,j+k)fluoranthene	mg/kg	3.4	5.0	7.8	5.0	8.6
Benzo(a)pyrene	mg/kg	2.2	3.2	5.0	3.3	5.5
Indeno(1,2,3-c,d)pyrene	mg/kg	1.5	2.5	3.5	2.6	3.6
Dibenzo(a,h)anthracene	mg/kg	0.3	0.3	0.8	0.5	0.8
Benzo(g,h,i)perylene	mg/kg	1.1	2.0	2.7	2.0	2.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	3.3	4.5	7.5	4.9	8.2
Benzo(a)pyrene TEQ calc(half)	mg/kg	3.3	4.5	7.5	4.9	8.2
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	3.3	4.5	7.5	4.9	8.2
Total Positive PAHs	mg/kg	22	39	46	32	57
Surrogate p-Terphenyl-d14	%	102	94	96	95	96

PAHs in Soil						
Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
Depth		0.05-0.3	0.25-0.5	0.0-0.2	0.0-0.2	0.5-0.8
Date Sampled		20/04/2016 soil	20/04/2016 soil	20/04/2016 soil	20/04/2016 soil	20/04/2016 soil
		301	3011	301	3011	3011
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Naphthalene	mg/kg	<0.1	0.6	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	1.4	<0.1	0.3	0.2
Acenaphthene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	0.4	<0.1	0.1	<0.1
Phenanthrene	mg/kg	0.7	7.3	0.2	2.4	1
Anthracene	mg/kg	0.2	2.0	<0.1	0.7	0.2
Fluoranthene	mg/kg	1.6	24	0.6	4.1	2.6
Pyrene	mg/kg	1.5	24	0.9	4.4	2.5
Benzo(a)anthracene	mg/kg	1.1	13	0.4	2.4	1.6
Chrysene	mg/kg	0.9	10	0.4	2.0	1.4
Benzo(b,j+k)fluoranthene	mg/kg	2	19	0.8	3.0	2.5
Benzo(a)pyrene	mg/kg	0.94	12	0.4	2.0	1.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7	7.9	0.4	1.3	1.1
Dibenzo(a,h)anthracene	mg/kg	0.1	1.7	<0.1	0.2	0.2
Benzo(g,h,i)perylene	mg/kg	0.5	6.3	0.3	1.0	0.8
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.4	18	0.6	2.9	2.2
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.4	18	0.7	2.9	2.2
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.4	18	0.7	2.9	2.2
Total Positive PAHs	mg/kg	10	130	4.4	24	16
Surrogate p-Terphenyl-d14	%	94	99	92	88	94

PAHs in Soil		
Our Reference:	UNITS	145327-42
Your Reference		DupGFS3
	-	
Deptn Deta Samplad		
Date Sampled		20/04/2016 soil
Date extracted	-	22/04/2016
Date analysed	-	22/04/2016
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	0.6
Anthracene	mg/kg	0.2
Fluoranthene	mg/kg	1.6
Pyrene	mg/kg	1.7
Benzo(a)anthracene	mg/kg	1
Chrysene	mg/kg	0.8
Benzo(b,j+k)fluoranthene	mg/kg	1
Benzo(a)pyrene	mg/kg	0.93
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7
Dibenzo(a,h)anthracene	mg/kg	0.1
Benzo(g,h,i)perylene	mg/kg	0.6
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.4
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.4
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.4
Total Positive PAHs	mg/kg	9.8
Surrogate p-Terphenyl-d14	%	102

Organochlorine Pesticides in soil						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
Danth	-	04.00	04.00	0100	0.0.0.0	0740
Deptn Date Sampled		0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Type of sample		soil	soil	soil	soil	soil
Data avtra ata d		22/04/2040	22/04/2040	22/04/2040	22/04/2040	22/04/2040
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	1.8	<0.1
Dieldrin	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	90	89	91	92	93

Organochlorine Pesticides in soil						
Our Reference:	UNITS	145327-16	145327-19	145327-23	145327-25	145327-28
Your Reference		BH6	BH7	BH8	BH9	BH10
	-			0507		0.05.0.5
Depth Deta Compled		0.0-0.2	0.0-0.2	0.5-0.7	0.0-0.2	0.25-0.5
Type of sample		20/04/2016 soil	20/04/2016 soil	20/04/2016 soil	20/04/2016 soil	20/04/2016 soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	107	91	92	84	83

Organochlorine Pesticides in soil						
Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
Donth	-	0.05.0.2	0.25.0.5	0.0.0.2	0.0.0.2	0508
Deptri Data Sampled		0.05-0.3	0.25-0.5	0.0-0.2	0.0-0.2	0.5-0.6
Type of sample		soil	soil	soil	soil	soil
		22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
	-	22/04/2010	22/04/2010	22/04/2010	22/04/2010	22/04/2010
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	86	86	83	85

Organochlorine Pesticides in soil		
Our Reference:	UNITS	145327-42
Your Reference		DupGFS3
Death	-	
Deptn Data Sampled		
Type of sample		soil
		22/04/2016
	-	22/04/2016
Date analysed	-	23/04/2016
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	90

Organophosphorus Pesticides						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	90	89	91	92	93
		1	1	Г	Г	1
Organophosphorus Pesticides		445007 40	445007.40	445007.00	445007.05	4 45007 00
Your Reference	UNITS	145327-16 BH6	145327-19 BH7	145327-23 BH8	145327-25 BH9	145327-28 BH10
	-	Brio	Bill	Brio	Brio	Bino
Depth		0.0-0.2	0.0-0.2	0.5-0.7	0.0-0.2	0.25-0.5
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
I ype of sample		SOIL	SOII	SOII	SOII	SOII
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1

Organophosphorus Pesticides						
Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
5 4	-					
Depth		0.05-0.3	0.25-0.5	0.0-0.2	0.0-0.2	0.5-0.8
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
		SOII	SOII	SOII	SOII	SOII
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	86	86	83	85

Organophosphorus Pesticides		
Our Reference:	UNITS	145327-42
Your Reference		DupGFS3
	-	
Depth		
Date Sampled		20/04/2016
l ype of sample		SOIL
Date extracted	-	22/04/2016
Date analysed	-	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	90

PCBs in Soil						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
	-					
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	90	89	91	92	93
	-					

PCBs in Soil						
Our Reference:	UNITS	145327-16	145327-19	145327-23	145327-25	145327-28
Your Reference		BH6	BH7	BH8	BH9	BH10
	-					
Depth		0.0-0.2	0.0-0.2	0.5-0.7	0.0-0.2	0.25-0.5
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.2
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.2
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.2
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.2
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.2
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.2
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.2
Surrogate TCLMX	%	107	91	92	84	83

PCBs in Soil						
Our Deferences		445007.00	445007.00	445007.04	445007.00	445007.00
Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
	-					
Depth		0.05-0.3	0.25-0.5	0.0-0.2	0.0-0.2	0.5-0.8
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	23/04/2016	23/04/2016	23/04/2016	23/04/2016	23/04/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	80	86	86	83	85

PCBs in Soil		
Our Reference:	UNITS	145327-42
Your Reference		DupGFS3
	-	
Depth		
Date Sampled		20/04/2016
Type of sample		soil
Date extracted	-	22/04/2016
Date analysed	-	23/04/2016
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Surrogate TCLMX	%	90

E29319K, Wentworth Park South

Acid Extractable metals in soil						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
	-					
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
		SOII	SOII	SOII	SOII	SOII
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Arsenic	mg/kg	5	<4	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	9.0	<0.4	<0.4
Chromium	mg/kg	10	7	10	6	11
Copper	mg/kg	29	44	48	22	120
Lead	mg/kg	100	31	100	10	230
Mercury	mg/kg	0.2	<0.1	0.1	<0.1	0.8
Nickel	mg/kg	3	8	12	13	7
Zinc	mg/kg	140	41	150	16	210
Acid Extractable metals in soil						
Our Reference:	UNITS	145327-16	145327-19	145327-23	145327-25	145327-28
Your Reference		BH6	BH7	BH8	BH9	BH10
Denth		0.0-0.2	0.0-0.2	0.5-0.7	0.0-0.2	0 25-0 5
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Arsenic	mg/kg	6	5	6	11	6
Cadmium	mg/kg	<0.4	<0.4	1	0.4	<0.4
Chromium	mg/kg	10	10	11	10	14
Copper	ma/ka	54	41	220	100	97
Lead	ma/ka	140	160	180	310	260
Mercurv	ma/ka	0.5	0.4	0.8	0.7	0.6
		0.0	.	0.0	.	0.0

6

140

17

460

9

580

Nickel

Zinc

mg/kg

mg/kg

6

130

12

350
Acid Extractable metals in soil						
Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
	-					
Depth		0.05-0.3	0.25-0.5	0.0-0.2	0.0-0.2	0.5-0.8
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Arsenic	mg/kg	<4	10	<4	<4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.4
Chromium	mg/kg	8	17	9	7	12
Copper	mg/kg	46	31	23	24	110
Lead	mg/kg	110	200	18	110	230
Mercury	mg/kg	0.2	0.7	<0.1	0.2	0.8
Nickel	mg/kg	17	4	7	4	10
Zinc	mg/kg	79	110	45	120	150

Acid Extractable metals in soil			
Our Reference:	UNITS	145327-42	145327-44
Your Reference		DupGFS3	BH10-
	-		TRIPLICATE
Depth			0.25-0.5
Date Sampled		20/04/2016	20/04/2016
Type of sample		soil	soil
Date prepared	-	22/04/2016	22/04/2016
Date analysed	-	22/04/2016	22/04/2016
Arsenic	mg/kg	<4	7
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	10	14
Copper	mg/kg	26	270
Lead	mg/kg	190	430
Mercury	mg/kg	0.2	0.6
Nickel	mg/kg	4	8
Zinc	mg/kg	170	290

Moisture						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
	-					
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016	26/04/2016
Moisture	%	16	16	16	12	12

Moisture Our Reference: Your Reference	UNITS 	145327-16 BH6	145327-19 BH7	145327-23 BH8	145327-25 BH9	145327-28 BH10
Depth Date Sampled Type of sample		0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.5-0.7 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.25-0.5 20/04/2016 soil
Date prepared Date analysed Moisture	- - %	22/04/2016 26/04/2016 14	22/04/2016 26/04/2016 15	22/04/2016 26/04/2016 13	22/04/2016 26/04/2016 15	22/04/2016 26/04/2016

Moisture Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
Depth Date Sampled Type of sample		0.05-0.3 20/04/2016 soil	0.25-0.5 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.5-0.8 20/04/2016 soil
Date prepared	-	22/04/2016	22/04/2016	22/04/2016	22/04/2016	22/04/2016
Date analysed	-	26/04/2016	26/04/2016	26/04/2016	26/04/2016	26/04/2016
Moisture	%	14	15	12	12	13

Moisture			
Our Reference:	UNITS	145327-42	145327-43
Your Reference		DupGFS3	TBS
	-		
Depth			
Date Sampled		20/04/2016	20/04/2016
Type of sample		soil	soil
Date prepared	-	22/04/2016	22/04/2016
Date analysed	-	26/04/2016	26/04/2016
Moisture	%	12	<0.1

Asbestos ID - soils						
Our Reference:	UNITS	145327-1	145327-4	145327-7	145327-9	145327-14
Your Reference		BH1	BH2	BH3	BH4	BH5
	-					
Depth		0.1-0.2	0.1-0.2	0.1-0.2	0.2-0.3	0.7-1.0
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	28/04/2016	28/04/2016	28/04/2016	28/04/2016	28/04/2016
Sample mass tested	g	Approx 55g	Approx 50g	Approx 35g	Approx 55g	Approx 50g
Sample Description	-	Brown	Brown	Grey fine	Grey fine	Brown
		coarse-grained	coarse-grained	grained soils &	grained soils &	coarse-grained
		soil & rocks	soil & rocks	rocks	rocks	soil & rocks
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at	detected at	detected at
		reporting limit of	reporting limit of	reporting limit of	reporting limit of	reporting limit of
		0.1g/kg Organia fibros	0.1g/kg Organia fibros	0.1g/kg Organia fibros	0.1g/kg Organia fibros	0.1g/kg Organia fibros
		detected	detected	detected	detected	detected
		No ophostop	No ophostop	No ophostop	No ophostop	
Trace Analysis	-	detected	detected	detected	detected	detected
		deletitu	deletitu	deteoted	deteoted	deteoted
Asbestos ID - soils						
Our Reference:	UNITS	145327-16	145327-19	145327-23	145327-25	145327-28
Your Reference		BH6	BH7	BH8	BH9	BH10
	-					
Depth		0.0-0.2	0.0-0.2	0.5-0.7	0.0-0.2	0.25-0.5
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	28/04/2016	28/04/2016	28/04/2016	28/04/2016	28/04/2016
Sample mass tested	g	Approx 25g	Approx 25g	Approx 30g	Approx 45g	Approx 30g
Sample Description		Derle Dresses	Brown	Brown	Brown	Grev coarse-
	-	Dark Brown	DIOWII	BIOWII	DIOWII	0109 000100
	-	coarse-grained	coarse-grained	coarse-grained	coarse-grained	grained soil &
	-	coarse-grained soil & rocks	coarse-grained soil & rocks	coarse-grained soil & rocks	coarse-grained soil & rocks	grained soil & rocks
Asbestos ID in soil	-	coarse-grained soil & rocks No asbestos	coarse-grained soil & rocks No asbestos	coarse-grained soil & rocks No asbestos	coarse-grained soil & rocks No asbestos	grained soil & rocks No asbestos
Asbestos ID in soil	-	coarse-grained soil & rocks No asbestos detected at	coarse-grained soil & rocks No asbestos detected at	coarse-grained soil & rocks No asbestos detected at	coarse-grained soil & rocks No asbestos detected at	grained soil & rocks No asbestos detected at
Asbestos ID in soil	-	coarse-grained soil & rocks No asbestos detected at reporting limit of	coarse-grained soil & rocks No asbestos detected at reporting limit of	coarse-grained soil & rocks No asbestos detected at reporting limit of	coarse-grained soil & rocks No asbestos detected at reporting limit of	grained soil & rocks No asbestos detected at reporting limit of
Asbestos ID in soil	-	Coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg	grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg
Asbestos ID in soil	-	Coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres	grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Asbestos ID in soil	-	Coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos ID in soil Trace Analysis	-	Dark Brown coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected No asbestos	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected No asbestos	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected No asbestos	coarse-grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected No asbestos	grained soil & rocks No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected No asbestos

Asbestos ID - soils						
Our Reference:	UNITS	145327-30	145327-32	145327-34	145327-36	145327-39
Your Reference		BH11	BH12	BH13	BH14	BH15
	-					
Depth		0.05-0.3	0.25-0.5	0.0-0.2	0.0-0.2	0.5-0.8
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	28/04/2016	28/04/2016	28/04/2016	28/04/2016	28/04/2016
Sample mass tested	g	Approx 30g	Approx 35g	Approx 30g	Approx 35g	Approx 35g
Sample Description	-	Black coarse-	Brown	Grey coarse-	Brown fine	Black coarse-
		grained soil &	coarse-grained	grained soil &	grained soils &	grained soil &
		rocks	soil & rocks	rocks	rocks	rocks
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of				
		0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos				
		detected	detected	detected	detected	detected

Client Reference: E29319K, Wentworth Park South

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contr buting PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bu k samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

E29319K, Wentworth Park South

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Soil			-	2	1			1
Date extracted				22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Date analysed	-			22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	145327-1	<25 <25	LCS-7	106%
TRHC6 - C10	mg/kg	25	Org-016	<25	145327-1	<25 <25	LCS-7	106%
Benzene	mg/kg	0.2	Org-016	<0.2	145327-1	<0.2 <0.2	LCS-7	97%
Toluene	mg/kg	0.5	Org-016	<0.5	145327-1	<0.5 <0.5	LCS-7	108%
Ethy benzene	mg/kg	1	Org-016	<1	145327-1	<1 <1	LCS-7	106%
m+p-xylene	mg/kg	2	Org-016	2	145327-1	<2 <2	LCS-7	109%
o-Xylene	mg/kg	1	Org-016	<1	145327-1	<1 <1	LCS-7	103%
naphthalene	mg/kg	1	Org-014	<1	145327-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	89	145327-1	85 84 RPD:1	LCS-7	90%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Sp ke %
svTRH(C10-C40) in Soil			1.11		Sm#	Base II Duplicate II % RPD	12.2	Recovery
Data autorated	-	-		22/04/2	445007.4	22/04/2016 11 22/04/2016	100.7	22/04/2046
Date extracted			1	016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Date analysed	÷			23/04/2 016	145327-1	23/04/2016 23/04/2016	LCS-7	23/04/2016
TRHC10 - C14	mg/kg	50	Org-003	<50	145327-1	<50 <50	LCS-7	121%
TRHC15 - C28	mg/kg	100	Org-003	<100	145327-1	<100 <100	LCS-7	109%
TRHC29 - C36	mg/kg	100	Org-003	<100	145327-1	<100 <100	LCS-7	111%
TRH>C10-C16	mg/kg	50	Org-003	<50	145327-1	<50 <50	LCS-7	121%
TRH>C16-C34	mg/kg	100	Org-003	<100	145327-1	< <u>100</u> <100	LCS-7	109%
TRH>C34-C40	mg/kg	100	Org-003	<100	145327-1	<100 <100	LCS-7	111%
Surrogate o-Terphenyl	%		Org-003	94	145327-1	85 85 RPD:0	LCS-7	102%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Sp ke % Recovery
PAHs in Soil				L		Base II Duplicate II % RPD		2.8.1
Date extracted	-			22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Date analysed	÷			22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Naphthalene	mg/kg	0.1	Org-012	<0.1	145327-1	<0.1 <0.1	LCS-7	90%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	145327-1	<0.1 0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	145327-1	<0.1 <0.1	LCS-7	92%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	145327-1	0.5 0.7 RPD:33	LCS-7	96%
Anthracene	mg/kg	0.1	Org-012	<0.1	145327-1	0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	145327-1	1.3 1.6 RPD:21	LCS-7	93%
Pyrene	mg/kg	0.1	Org-012	<0.1	145327-1	1.4 1.7 RPD:19	LCS-7	99%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	145327-1	1 1.0 RPD:0	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	145327-1	0.8 1 RPD: 22	LCS-7	78%
Benzo(b.i	mg/kg	0.2	Org-012	<0.2	145327-1	1 2 RPD:67	[NR]	INRI
+k)fluoranthene				10202		Care a service		

Envirolab Reference: 145327 **Revision No:** R 01

		Cli	ent Referen	ce: E	29319K, We	ntworth Park South		
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	145327-1	0.87 1.0 RPD:14	LCS-7	104%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	145327-1	0.7 0.8 RPD:13	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	145327-1	0.1 0.1 RPD:0	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	145327-1	0.5 0.6 RPD:18	[NR]	[NR]
Surrogate p-Terphenyl- d14	%	1	Org-012	106	145327-1	99 89 RPD:11	LCS-7	115%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Sp ke % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		17.27
Date extracted	, L.			22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Date analysed				23/04/2 016	145327-1	23/04/2016 23/04/2016	LCS-7	23/04/2016
HCB	mg/kg	0,1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	80%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	76%
Heptachlor	mg/kg	0,1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	79%
delta-BHC	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	80%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	79%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Endosulfanl	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	81%
Dieldrin	mg/kg	0,1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	82%
Endrin	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	86%
pp-DDD	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	85%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	LCS-7	87%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	94	145327-1	90 86 RPD:5	LCS-7	96%

eneme reference.	Client	Reference:
------------------	--------	------------

QUALITY CONTROL Organophosphorus Posticidas	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Date extracted				22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Date analysed	-			23/04/2 016	145327-1	23/04/2016 23/04/2016	LCS-7	23/04/2016
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1	LCS-7	88%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	LCS-7	77%
Dimethoate	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	LCS-7	92%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1	LCS-7	94%
Malathion	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	LCS-7	75%
Parathion	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	LCS-7	116%
Ronnel	mg/kg	0.1	Org-008	<0.1	145327-1	<0.1 <0.1	LCS-7	96%
Surrogate TCMX	%		Org-008	94	145327-1	90 86 RPD:5	LCS-7	90%
QUALITY CONTROL PCBs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Date extracted				22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Date analysed	÷			23/04/2 016	145327-1	23/04/2016 23/04/2016	LCS-7	23/04/2016
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	145327-1	<0.1 <0.1	LCS-7	103%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	145327-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	94	145327-1	90 86 RPD:5	LCS-7	90%

Client Reference	•
-------------------------	---

Date prepared Date analysed Arsenic Cadmium Chromium Copper Lead Mercury Nickel					Sm#	Base II Duplicate II %RPD		Recovery
Date analysed Arsenic Cadmium Chromium Copper Lead Mercury Nickel	÷			22/04/2	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Arsenic Cadmium Chromium Copper Lead Mercury Nickel	-			22/04/2 016	145327-1	22/04/2016 22/04/2016	LCS-7	22/04/2016
Cadmium Chromium Copper Lead Mercury Nickel	mg/kg	4	Metals-020	<4	145327-1	5 4 RPD:22	LCS-7	115%
Chromium Copper Lead Mercury Nickel	mg/kg	0.4	Metals-020	<0.4	145327-1	<0.4 <0.4	LCS-7	108%
Copper Lead Mercury Nickel	mg/kg	1	Metals-020	<1	145327-1	10 8 RPD:22	LCS-7	108%
Lead Mercury Nickel	mg/kg	1	Metals-020	<1	145327-1	29 31 RPD:7	LCS-7	111%
Mercury Nickel	mg/kg	1	Metals-020	<1	145327-1	100 80 RPD: 22	LCS-7	108%
Nickel	mg/kg	0.1	Metals-021	<0.1	145327-1	0.2 0.1 RPD:67	LCS-7	92%
	mg/kg	1	Metals-020	<1	145327-1	3 3 RPD:0	LCS-7	103%
Zinc	mg/kg	1	Metals-020	<1	145327-1	140 120 RPD:15	LCS-7	105%
QUALITYCONTROL vTRH(C6-C10)/BTEXNin Soil	UNITS	S	Dup. Sm#	Base+	Duplicate Spike Sm# Base + Duplicate + %RPD		Sp ke % Rec	overy
Date extracted	-	1100	145327-28	22/04/2	2016 22/04/201	6 145327-4	22/04/201	6
Date analysed	-		145327-28	22/04/2016 22/04/2016		6 145327-4	22/04/201	6
TRHC6-C9	mg/k	q	145327-28		<25 <25	145327-4	103%	÷
TRHC6 - C10	ma/k	a	145327-28		<25 <25	145327-4	103%	
Benzene	ma/k	a	145327-28	<0.211<0.2		145327-4	99%	
Toluene	malka	a	145327-28	<0.511<0.5		145327-4	105%	
Ethybonzono	malle	9	145227 20	<1 <1		145227 4	103%	
	ing/N	9	145527-20	<1 <1		145327-4	102%	
m+p-xyiene	mg/k	g	145327-28	<2 <2		145327-4	105%	
o-Xylene	mg/kg	g	145327-28		<1 <1	145327-4	145327-4 100%	
naphthalene	mg/k	g	145327-28		<1 <1	[NR]	[NR]	
Surrogate aaa- Trifluorotoluene	%		145327-28	82	88 RPD:7	145327-4	85%	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	S	Dup. Sm#	Base+	Duplicate Duplicate + %RF	Spike Sm# PD	Sp ke % Rec	overy
Date extracted	-	- 1	145327-28	22/04/2	2016 22/04/201	6 145327-4	22/04/201	6
Date analysed	15		145327-28	23/04/2	2016 23/04/201	6 145327-4	23/04/201	16
TRHC 10 - C14	mg/k	g	145327-28		<50 <50	145327-4	130%	
TRHC 15 - C28	mg/k	g	145327-28	15011 12011 RPD 22		145327-4	#	
TRHC29 - C36	ma/ke	a	145327-28	160 120 10 D.22		145327-4	#	
TRH>C10-C16	ma/k	a	145327-28	0.00	<5011<50	145327-4	130%	
	malk	a l	145327-28	2701		145327-4	#	
	mala	9	1/5307.09	210	11011<100	145227 4	#	
	mg/K	9	445007 00	05		145027-4	#	

		Cheffe Reference		an rank ooutin	
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery
Date extracted	1.07	145327-28	22/04/2016 22/04/2016	145327-4	22/04/2016
Date analysed	-	145327-28	22/04/2016 22/04/2016	145327-4	22/04/2016
Naphthalene	mg/kg	145327-28	0.5 0.1 RPD: 133	145327-4	90%
Acenaphthylene	mg/kg	145327-28	0.7 0.4 RPD:55	[NR]	[NR]
Acenaphthene	mg/kg	145327-28	0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	145327-28	0.2 0.1 RPD:67	145327-4	92%
Phenanthrene	mg/kg	145327-28	4.1 3.5 RPD: 16	145327-4	105%
Anthracene	mg/kg	145327-28	1.2 1.1 RPD:9	[NR]	[NR]
Fluoranthene	mg/kg	145327-28	9.2 7.5 RPD:20	145327-4	111%
Pyrene	mg/kg	145327-28	9.2 7.8 RPD: 16	145327-4	116%
Benzo(a)anthracene	mg/kg	145327-28	6.0 4.5 RPD:29	[NR]	[NR]
Chrysene	mg/kg	145327-28	4.8 3.9 RPD:21	145327-4	84%
Benzo(b,j+k)fluoranthene	mg/kg	145327-28	8.6 6.6 RPD:26	[NR]	[NR]
Benzo(a)pyrene	mg/kg	145327-28	5.5 4.2 RPD:27	145327-4	114%
Indeno(1,2,3-c,d)pyrene	mg/kg	145327-28	3.6 2.9 RPD:22	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	145327-28	0.8 0.4 RPD:67	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	145327-28	2.7 2.1 RPD:25	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	145327-28	96 94 RPD:2	145327-4	104%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery
Date extracted	1.00	145327-28	22/04/2016 22/04/2016	145327-4	22/04/2016
Date analysed	-	145327-28	23/04/2016 23/04/2016	145327-4	23/04/2016
HCB	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	145327-28	<0.1 <0.1	145327-4	77%
gamma-BHC	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	145327-28	<0.1 <0.1	145327-4	74%
Heptachlor	mg/kg	145327-28	<0.1 <0.1	145327-4	75%
delta-BHC	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	145327-28	<0.1 <0.1	145327-4	77%
Heptachlor Epoxide	mg/kg	145327-28	<0.1 <0.1	145327-4	76%
gamma-Chlordane	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
Endosulfanl	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	145327-28	<0.1 <0.1	145327-4	78%
Dieldrin	mg/kg	145327-28	<0.1 <0.1	145327-4	80%
Endrin	mg/kg	145327-28	<0.1 <0.1	145327-4	83%
pp-DDD	mg/kg	145327-28	<0.1 <0.1	145327-4	81%
EndosulfanII	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	ma/ka	145327-28	<0.111<0.1	145327-4	82%

		Client Reference	E29319K, Wentworth Park South				
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery		
Methoxychlor	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]		
Surrogate TCMX	%	145327-28	83 88 RPD:6	145327-4	83%		
QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery		
Date extracted	+	145327-28	22/04/2016 22/04/2016	145327-4	22/04/2016		
Date analysed	-	145327-28	23/04/2016 23/04/2016	145327-4	23/04/2016		
Azinphos-methyl (Guthion)	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]		
Bromophos-ethyl	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]		
Chlorpyriphos	mg/kg	145327-28	<0.1 <0.1	145327-4	83%		
Chlorpyriphos-methyl	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]		
Diazinon	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]		
Dichlorvos	mg/kg	145327-28	<0.1 <0.1	145327-4	67%		
Dimethoate	mg/kg	145327-28	<0.1 <0.1	[NR]	[NR]		
Ethion	mg/kg	145327-28	<0.1 <0.1	145327-4	84%		
Fenitrothion	mg/kg	145327-28	<0.1 <0.1	145327-4	96%		
Malathion	mg/kg	145327-28	<0.1 <0.1	145327-4	75%		
Parathion	mg/kg	145327-28	<0.1 <0.1	145327-4	97%		
Ronnel	mg/kg	145327-28	<0.1 <0.1	145327-4	88%		
Surrogate TCMX	%	145327-28	83 88 RPD:6	145327-4	83%		
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery		
Date extracted	× .	145327-28	22/04/2016 22/04/2016	145327-4	22/04/2016		
Date analysed	-	145327-28	23/04/2016 23/04/2016	145327-4	23/04/2016		
Aroclor 1016	mg/kg	145327-28	<0.2 <0.2	[NR]	[NR]		
Aroclor 1221	mg/kg	145327-28	<0.2 <0.2	[NR]	[NR]		
Aroclor 1232	mg/kg	145327-28	<0.2 <0.2	[NR]	[NR]		
Aroclor 1242	mg/kg	145327-28	<0.2 <0.2	[NR]	[NR]		
Aroclor 1248	mg/kg	145327-28	<0.2 <0.2	[NR]	[NR]		
Aroclor 1254	mg/kg	145327-28	<0.2 <0.2	145327-4	100%		
Aroclor 1260	mg/kg	145327-28	<0.2 <0.2	[NR]	[NR]		
Surrogate TCLMX	%	145327-28	83 88 RPD:6	145327-4	83%		

QUALITY CONTROL Acid Extractable metals in soil	UNITS Dup. Sm#		Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery	
Date prepared	(T. E. 1	145327-28	22/04/2016 22/04/2016	145327-4	22/04/2016	
Date analysed	2	145327-28	22/04/2016 22/04/2016	145327-4	22/04/2016	
Arsenic	mg/kg	145327-28	6 5 RPD:18	145327-4	100%	
Cadmium	mg/kg	145327-28	<0.4 <0.4	145327-4	98%	
Chromium	mg/kg	145327-28	14 14 RPD:0	145327-4	100%	
Copper	mg/kg	145327-28	97 170 RPD:55	145327-4	108%	
Lead	mg/kg	145327-28	260 1600 RPD: 144	145327-4	126%	
Mercury	mg/kg	145327-28	0.6 0.7 RPD:15	145327-4	90%	
Nickel	mg/kg	145327-28	12 10 RPD:18	145327-4	101%	
Zinc	mg/kg	145327-28	350 310 RPD:12	145327-4	103%	

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 145327-28 for Cu, Pb. Therefore a triplicate result has been issued as laboratory sample number 145327-44.

TRH_S(semivol):# Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

PCB in soil: PQL has been raised due to interference from analytes(other than those being tested) in the sample/s.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 145327-1 & 4 were sub-sampled from bags provided by the client.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	

Sample Login Details					
Your Reference	E29319K, Wentworth Park South				
Envirolab Reference	145327				
Date Sample Received	21/04/2016				
Date Instructions Received	21/04/2016				
Date Results Expected to be Reported	29/04/2016				

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	43 soil
Turnaround Time Requested	Standard
Temperature on receipt (°C)	12.4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Phone:	Phone:
Fax:	Fax:
Email:	Email:

Sample and Testing Details on following page

Sample Id	vTRH(C6- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Asbestos ID - soils	On Hold
BH1-0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH1-0.8-1.0									\checkmark
BH1-2.3-2.5									\checkmark
BH2-0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH2-1.0-1.1									\checkmark
BH2-2.7-3.15									\checkmark
BH3-0.1-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH3-1.0-1.1									\checkmark
BH4-0.2-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH4-0.5-0.95									\checkmark
BH4-1.3-1.5									\checkmark
BH3-2.0-2.2									\checkmark
BH5-0.0-0.2									\checkmark
BH5-0.7-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH5-1.3-1.5									\checkmark
BH6-0.0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH6-0.5-0.8									\checkmark
BH6-1.3-1.5									\checkmark
BH7-0.0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH7-0.7-1.0									\checkmark
BH7-1.3-1.5									\checkmark
BH8-0.0-0.2									\checkmark
BH8-0.5-0.7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH8-1.3-1.5									\checkmark
BH9-0.0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH9-0.5-0.7									\checkmark
BH9-1.3-1.5									\checkmark
BH10-0.25-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH10-1.1-1.3									\checkmark
BH11-0.05-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH11-0.8-1.1									\checkmark
BH12-0.25-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH12-1.3-1.5									\checkmark
BH12-0.0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH13-0.5-0.8									\checkmark
BH14-0.0-0.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH14-0.7-1.0									\checkmark
BH15-0.0-0.2									\checkmark
BH15-0.5-0.8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
BH15-1.3-1.5									\checkmark
DupGFS1									\checkmark

Sample Id	vTRH(CG- C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Asbestos ID - soils	Dn Hold
DupGFS3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
TBS	\checkmark								

TO:ENVIROLAB SERVICES PTY LTDEI12 ASHLEY STREETNCHATSWOOD NSW 2067P: (02) 99106200F: (02) 99106201R:Attention:P:			TO:FRCENVIROLAB SERVICES PTY LTDEIS JobE29319K12 ASHLEY STREETNumber:INVCHATSWOOD NSW 2067Date ResultsSTANDARDP: (02) 99106200Date ResultsSTANDARDF: (02) 99106201Required:MAP: (02) 99106201Required:Attention:				EROM: ENVIRO INVESTI SERVICI REAR O MACQU P: 02-98 Attentio	NMENTA IGATION ES F 115 V JARIE PA 888 500	AL VICKS ARK, N	ROAI ISW 2 F: 02	0 2113 2-9888	500	5			
ocation:	Wenty	worth Park S	outh				San			nple Preserved in Esky on Ice						
Sampler:	GF+N	IC	-					_		Test	s Requi	red		_	_	
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description		Combo 6	Combo 6a			BTEX	Asbestos			
20/4/16	1	BHI	0.1-0.2	G.A	0	FII			X							
1	2	1	0.8-	1	0											
	3	•	2.3-5		D											
	4	BHZ	0.1-0.2		0				X							
	5		1-(-)		0								-			
	6	+	273.15		0		-									
	7	BH3	01-0.2		0	10			X	1						
	8	+	1-1.1		0				1							
	9	BH4	0.2-3		0				X							
	10	1	0.5-0.95		0											N.S.
	H		1.315		0											
	12	BITA	27.2		0											-
	13	BAS	002		0									-		
	14	1	07-0		0				X			ENV	ROU	в	Envi	12 A
	15	•	1.3.5		0								1120		hatsw Ph:	ood N (02) 9
	16	BH6	0.2		0				X			Jol	No	145	53	27
	17		0.5-8		0							Dat	e Re	eived	21	माम
	15		137.5		0						2	Ree	eive	by:	AC	0
	19	BH7	0-0.2		0				X			Co	ing:	ce/lc	abient enack	
	20	1	0.7-0		0							See	urity	Intere)***/k	en/No
	21	+	1.37.5		0		1.1.1									-
	22	8#8	00.2		0											
	23		0.55.7		0				X				6.0			
	24	+	1.3-1.5		0											
-	25	BHG	0-0.2	4	0	-			X							
Remarks (Reus SS to Relinguish	comments	d R as la-	up GFS kr lab	Z to Date:	. 0	wholeb	Sample (G - 250r A - Ziplo P - Plast Time:	Containe mg Glas ock Asbe ic Bag	ers: s Jar estos	Bag	d Bv:			Date		
				21	11/14		15	. 21				-		21	4/1	6

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201 Attention:		EIS J Num Date Requ Page	Job ber: Resu iired:	ults	E29319K STANDA	RD 2 2				FROM: ENVIRON INVESTIC SERVICE REAR OF MACQUA P: 02-98 Attention	IMENTAI GATION S 115 WI ARIE PAF 88 5000	CKS RK, N	ROAD SW 21 F: 02-	13 9888 5	IS		
Location:	Went	worth Park Sc	outh	-							Sam	ple Preser	ved in E	sky o	n Ice		
Sampler:	GF+N	IC .							_			Tests	Require	d			_
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample	Container	PID	Sample Description			Combo 6	Combo 6a			BTEX	Asbestos		
20/4/16	26	BH9	0.5-	G,	A	0	Fil										
1	27	4	137.5			0	1										
	28	BHIO	0.25-0.5			0					X						
	29	4	1.17.3			0											
	30	BH 11	0.053			0					X						
	BI	+	0.87.1			0											
	32	DHIZ	0.255			0					×						
	33	+	1.37.5			0											
	3/1	BH 13	0-0.2			0					X						
	35	4	0.5-			0					-						
	36	BH 14	0.2			0					×		1.				
	37	4	0.7-10			0											
	38	BH 15	00.2			0											
	39	1	0.5-8			0					X			1000			
	40	4	1.37.5		,	0	+										
	41	ROGESI	-	6	;	-	50:1										
	×	ROGFSZ				-				X	1						
	42	Riph F33	-			-				X							
	43	TBS	-	+		-	•							X			
														1			
		1															
Remarks (co Please Sister	nments Se IqL	s/detection lin	p G FJ	12	.+	o E Ar	nvitoli D	Sal G A P	mple C 250m Ziploc Plastic	Containe ng Glass ck Asbe c Bag	ers: s Jar estos	Bag					
Relinauished	Bv:			Date	21	4/1	6	Tin	ne: 15:	21		Received	Bv:	,	2	Date:	116

1

Ť.

145327

÷

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

145327-A

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention:

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

E29319K, Wentworth Park South

Additional Testing on 3 Soils 21/04/2016 / 02/05/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

 Report Details:

 Date results requested by: / Issue Date:
 9/05/16
 /
 4/05/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Laborttory Manager

vTRH(C6-C10)/BTEXN in Soil Our Reference: Your Reference	UNITS	145327-A-13 BH5	145327-A-22 BH8	145327-A-38 BH15
Depth Date Sampled Type of sample		0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil
Date extracted	-	03/05/2016	03/05/2016	03/05/2016
Date analysed	-	04/05/2016	04/05/2016	04/05/2016
TRHC6 - C9	mg/kg	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	86	84	90

svTRH (C10-C40) in Soil Our Reference:	UNITS	145327-A-13	145327-A-22	145327-A-38
Your Reference		BH5	BH8	BH15
Depth		0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil
Date extracted	-	03/05/2016	03/05/2016	03/05/2016
Date analysed	-	03/05/2016	03/05/2016	03/05/2016
TRHC 10 - C14	mg/kg	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	140
TRHC 29 - C 36	mg/kg	<100	100	150
TRH>C10-C16	mg/kg	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	250
TRH>C34-C40	mg/kg	110	<100	<100
Surrogate o-Terphenyl	%	81	92	93

PAHs in Soil Our Reference: Your Reference	UNITS	145327-A-13 BH5	145327-A-22 BH8	145327-A-38 BH15
Depth Date Sampled Type of sample		0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil
Date extracted	-	03/05/2016	03/05/2016	03/05/2016
Date analysed	-	03/05/2016	03/05/2016	03/05/2016
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.1	0.5
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	0.1
Phenanthrene	mg/kg	<0.1	0.8	6.9
Anthracene	mg/kg	<0.1	0.2	1.5
Fluoranthene	mg/kg	0.2	2.1	10
Pyrene	mg/kg	0.2	2.1	9.6
Benzo(a)anthracene	mg/kg	0.1	1.2	5.6
Chrysene	mg/kg	0.2	1.2	4.2
Benzo(b,j+k)fluoranthene	mg/kg	0.3	2.0	7.4
Benzo(a)pyrene	mg/kg	0.2	1.2	4.9
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	0.7	2.8
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	0.5
Benzo(g,h,i)perylene	mg/kg	0.1	0.7	2.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	1.7	7.0
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	1.7	7.0
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	1.7	7.0
Total Positive PAHs	mg/kg	1.4	12	57
Surrogate p-Terphenyl-d14	%	88	97	94

Organochlorine Pesticides in soil				
Our Reference:	UNITS	145327-A-13	145327-A-22	145327-A-38
Your Reference		BH5	BH8	BH15
	-			
Depth		0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil
Date extracted	-	03/05/2016	03/05/2016	03/05/2016
Date analysed	-	03/05/2016	03/05/2016	03/05/2016
HCB	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	0.6
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	105	97

Organophosphorus Pesticides				
Our Reference:	UNITS	145327-A-13	145327-A-22	145327-A-38
Your Reference		BH5	BH8	BH15
Depth Date Sampled Type of sample		0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil
Date extracted	-	03/05/2016	03/05/2016	03/05/2016
Date analysed	-	03/05/2016	03/05/2016	03/05/2016
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	95	105	97

	1			
PCBs in Soil				
Our Reference:	UNITS	145327-A-13	145327-A-22	145327-A-38
Your Reference		BH5	BH8	BH15
	-			
Depth		0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil
Date extracted	-	03/05/2016	03/05/2016	03/05/2016
Date analysed	-	03/05/2016	03/05/2016	03/05/2016
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	95	105	97

Acid Extractable metals in soil				
Our Reference:	UNITS	145327-A-13	145327-A-22	145327-A-38
Your Reference		BH5	BH8	BH15
	-			
Depth		0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil
Date prepared	-	03/05/2016	03/05/2016	03/05/2016
Date analysed	-	03/05/2016	03/05/2016	03/05/2016
Arsenic	mg/kg	<4	5	4
Cadmium	mg/kg	<0.4	0.5	<0.4
Chromium	mg/kg	9	11	10
Copper	mg/kg	28	50	48
Lead	mg/kg	57	190	100
Mercury	mg/kg	0.1	0.4	0.3
Nickel	mg/kg	10	8	19
Zinc	mg/kg	66	160	160

Moisture				
Our Reference:	UNITS	145327-A-13	145327-A-22	145327-A-38
Your Reference		BH5	BH8	BH15
	-			
Depth		0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil
Date prepared	-	3/05/2016	3/05/2016	3/05/2016
Date analysed	-	4/05/2016	4/05/2016	4/05/2016
Moisture	%	16	30	11

Asbestos ID - soils				
Our Reference:	UNITS	145327-A-13	145327-A-22	145327-A-38
Your Reference		BH5	BH8	BH15
	-			
Depth		0.0-0.2	0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil
Date analysed	-	4/05/2016	4/05/2016	4/05/2016
Sample mass tested	g	Approx. 55g	Approx. 25g	Approx. 50g
Sample Description	-	Brown fine-	Brown fine-	Brown fine-
		grained soil and	grained soil and	grained soil and
		rocks	rocks	rocks
Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos
		detected at	detected at	detected at
		reporting limit of	reporting limit of	reporting limit of
		0.1g/kg	0.1g/kg	0.1g/kg
		Organic fibres	Organic fibres	Organic fibres
		detected	detected	detected
Trace Analysis	-	No asbestos	No asbestos	No asbestos
		detected	detected	detected

Client Reference: E29319K, Wentworth Park South

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bu k samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

		Cli	ent Referen	ce: E	29319K, W	entworth Park South	1.	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Sp ke % Recovery
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II %RPD	L	
Date extracted				03/05/2 016	[NT]	[TV]	LCS-1	03/05/2016
Date analysed				04/05/2 016	[NT]	נדאן	LCS-1	04/05/2016
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	94%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	94%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	90%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	96%
Ethy benzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	95%
m+p-xylene	mg/kg	2	Org-016	2	[NT]	[NT]	LCS-1	95%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	93%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	94	[NT]	נדאן	LCS-1	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Sp ke %
Laterate bases and	1.000	12	1	1.1	Sm#	annad the subsect		Recovery
svTRH(C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	4			03/05/2 016	[NT]	[NT]	LCS-1	03/05/2016
Date analysed	ι÷.			03/05/2 016	[NT]	[TV]	LCS-1	03/05/2016
TRHC10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	102%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	107%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	97%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	102%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	107%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	97%
Surrogate o-Terphenyl	%		Org-003	82	[NT]	[NT]	LCS-1	96%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Sp ke % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			03/05/2 016	[TM]	[דא]	LCS-1	03/05/2016
Date analysed	÷			03/05/2 016	[NT]	[TM]	LCS-1	03/05/2016
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	97%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	INT	INT	[NR]	[NR]
Acenaphthene	mg/kg	0,1	Org-012	<0.1	[NT]	INT	[NR]	[NR]
Fluorene	ma/ka	0.1	Org-012	<0.1	INT	INTI	LCS-1	102%
Phenanthrene	ma/ka	0,1	Org-012	<0.1	INTI	INTI	LCS-1	104%
Anthracene	ma/ka	0.1	Org-012	<0.1	INTI	INTI	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	INTI	INTI	LCS-1	89%
Pyrene	ma/ka	0.1	Org-012	<0.1	INTI	INTI	LCS-1	93%
Benzo(a)anthracene	ma/ka	0.1	Ora-012	<01	INTI	INTI	INRI	INRI
Chrysene	ma/ka	0.1	Org-012	<01	INTI	INTI	LCS-1	83%
Benzo(b i	ma/ka	0.2	Org-012	<0.2	INTI	INTI	INRI	INRI
+k)fluoranthene	mgng	0.2	orgorz	-V.Z	Feel	641	fra A	6.4.3

Envirolab Reference: 145327-A **Revision No:** R 00

		Cli	ent Referen	ce: E	29319K, W	entworth Park South		
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-1	110%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%	1	Org-012	88	[NT]	נדאן	LCS-1	109%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Date extracted	÷			03/05/2 016	[NT]	[TV]	LCS-1	03/05/2016
Date analysed	-			03/05/2 016	[NT]	[NT]	LCS-1	03/05/2016
HCB	mg/kg	0,1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	70%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	81%
Heptachlor	mg/kg	0,1	Org-005	<0.1	[NT]	[NT]	LCS-1	85%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	96%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	84%
gamma-Chlordane	mg/kg	0,1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfanl	mg/kg	0,1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	82%
Dieldrin	mg/kg	0,1	Org-005	<0.1	[NT]	[NT]	LCS-1	88%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	95%
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-1	78%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	[NT]	[TV]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[TV]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0,1	Org-005	<0.1	[NT]	[NT]	LCS-1	73%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[T/]	[NR]	[NR]
Surrogate TCMX	%		Org-005	99	[NT]	[NT]	LCS-1	115%

Client Reference: E29319K, Wentworth Park South								
QUALITY CONTROL Organophosphorus Pesticides	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Date extracted				03/05/2 016	[TN]	[TV]	LCS-1	03/05/2016
Date analysed	-			03/05/2 016	[NT]	נדאן	LCS-1	03/05/2016
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	נדאן	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	90%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	102%
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	85%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	87%
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	80%
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	91%
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-1	94%
Surrogate TCMX	%		Org-008	99	[NT]	[NT]	LCS-1	97%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Sp ke % Recovery
PCBs in Soil		1				Base II Duplicate II % RPD	_	
Date extracted	-			03/05/2 016	[NT]	[דא]	LCS-1	03/05/2016
Date analysed	÷			03/05/2 016	[NT]	[T7]	LCS-1	03/05/2016
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-1	108%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	99	[NT]	[NT]	LCS-1	97%

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Sp ke % Recovery
Acid Extractable metals in soil	1					Base II Duplicate II %RPD		
Date prepared	·			03/05/2 016	[NT]	[17]	LCS-1	03/05/2016
Date analysed	· · ·			03/05/2 016	[NT]	[דא]	LCS-1	03/05/2016
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[TN]	LCS-1	111%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	נזאן	LCS-1	104%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TV]	LCS-1	109%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	נדאן	LCS-1	109%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	נדאן	LCS-1	103%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[TV]	LCS-1	88%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[TV]	LCS-1	102%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	נדאן	LCS-1	105%

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 145327-A-13,22,38 were sub-sampled from jars provided by the client.

Asbestos ID was analysed by Approved Identifier:	Paul Ching
Asbestos ID was authorised by Approved Signatory:	Lulu Scott

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.
From:	
Sent:	Monday, 2 May 2016 10:47 AM
To:	
Subject:	Additional testing 145327 E29319K, Wentworth Park South

Hi

Could we please schedule the following additional testing from the above lab report on a standard turnaround please:

- 13 BH5 (0-0.2m) Combo 6a;
- 12• BH8 (0-0.2m) Combo 6a; and
- 3% BH15 (0-0.2m) Combo 6a.

Envirolab Ref. 145327 A DJe: 915116 std +1A.

Regards,

Environmental Scientist

www.jkgroup.net.au

Environmental Investigation Services CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS PO Box 976, North Ryde BC NSW 1670 115 Wicks Rd, Macquarie Park NSW 2113 T: +612 9888 5000 F: +612 9888 5001

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

145327-B

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention:

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

E29319K, Wentworth Park South

Additional Testing on 11 Soils 21/04/2016 / 03/05/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

 Report Details:

 Date results requested by: / Issue Date:
 10/05/16
 / 9/05/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Laborttory Manager

Metals in TCLPUSEPA1311						
Our Reference:	UNITS	145327-B-1	145327-B-14	145327-B-16	145327-B-19	145327-B-23
Your Reference		BH1	BH5	BH6	BH7	BH8
	-					
Depth		0.1-0.2	0.7-1.0	0.0-0.2	0.0-0.2	0.5-0.7
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	04/05/2016	04/05/2016	04/05/2016	04/05/2016	04/05/2016
Date analysed	-	[NA]	04/05/2016	04/05/2016	04/05/2016	04/05/2016
pH of soil for fluid# determ.	pH units	6.1	7.7	5.7	8.5	7.4
pH of soil TCLP (after HCI)	pH units	1.7	1.8	1.6	1.7	1.6
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.0	5.0	5.2
LeadinTCLP	mg/L	[NA]	0.1	<0.03	0.08	0.06

Metals in TCLPUSEPA1311						
Our Reference:	UNITS	145327-B-25	145327-B-28	145327-B-30	145327-B-32	145327-B-36
Your Reference		BH9	BH10	BH11	BH12	BH14
	-					
Depth		0.0-0.2	0.25-0.5	0.05-0.3	0.25-0.5	0.0-0.2
Date Sampled		20/04/2016	20/04/2016	20/04/2016	20/04/2016	20/04/2016
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	04/05/2016	04/05/2016	04/05/2016	04/05/2016	04/05/2016
Date analysed	-	04/05/2016	04/05/2016	04/05/2016	04/05/2016	04/05/2016
pH of soil for fluid# determ.	pH units	5.9	9.0	9.7	9.2	9.5
pH of soil TCLP (after HCI)	pH units	1.7	1.7	1.8	1.7	1.6
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.0	5.0	5.5	6.2	5.4
LeadinTCLP	mg/L	0.1	0.09	<0.03	0.1	0.07

Metals in TCLP USEPA1311		
Our Reference:	UNITS	145327-B-39
Your Reference		BH15
	-	
Depth		0.5-0.8
Date Sampled		20/04/2016
Type of sample		soil
Date extracted	-	04/05/2016
Date analysed	-	04/05/2016
pH of soil for fluid# determ.	pH units	8.1
pH of soil TCLP (after HCI)	pH units	1.6
Extraction fluid used	-	1
pH of final Leachate	pH units	5.4
Lead in TCLP	mg/L	0.2

Client Reference:

E29319K, Wentworth Park South

PAHs in TCLP (USEPA 1311)						
Our Reference:	UNITS	145327-B-1	145327-B-14	145327-B-16	145327-B-19	145327-B-23
Your Reference		BH1	BH5	BH6	BH7	BH8
Depth Date Sampled Type of sample		0.1-0.2 20/04/2016 soil	0.7-1.0 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.0-0.2 20/04/2016 soil	0.5-0.7 20/04/2016 soil
Date extracted	-	04/05/2016	04/05/2016	04/05/2016	04/05/2016	04/05/2016
Date analysed	-	04/05/2016	04/05/2016	04/05/2016	04/05/2016	04/05/2016
Naphthalene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene-TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	100	102	97	103	103

Client Reference:

E29319K, Wentworth Park South

PAHs in TCLP (USEPA 1311)						
Our Reference:	UNITS	145327-B-25	145327-B-28	145327-B-30	145327-B-32	145327-B-36
Your Reference		BH9	BH10	BH11	BH12	BH14
Depth Date Sampled Type of sample		0.0-0.2 20/04/2016 soil	0.25-0.5 20/04/2016 soil	0.05-0.3 20/04/2016 soil	0.25-0.5 20/04/2016 soil	0.0-0.2 20/04/2016 soil
Date extracted	-	04/05/2016	04/05/2016	04/05/2016	04/05/2016	04/05/2016
Date analysed	-	04/05/2016	04/05/2016	04/05/2016	04/05/2016	04/05/2016
Naphthalene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
FluorantheneinTCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene-TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	104	97	97	119	106

PAHs in TCLP (USEPA 1311)		
Our Reference:	UNITS	145327-B-39
Your Reference		BH15
Depth Date Sampled Type of sample		0.5-0.8 20/04/2016 soil
Date extracted	-	04/05/2016
Date analysed	-	04/05/2016
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
AcenaphtheneinTCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL(+)VE
Surrogate p-Terphenyl-d14	%	105

Client Reference: E29319K, Wentworth Park South

MethodID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

Client	Reference:

E29319K, Wentworth Park South

QUALITY CONTROL Metals in TCLP	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Date extracted				04/05/2	145327-B-	04/05/2016 04/05/2016	LCS-W1	04/05/2016
Date analysed	-			016 04/05/2	25 145327-B-	04/05/2016 04/05/2016	LCS-W1	04/05/2016
Lead in TCLP	mg/L	0.03	Metals-020	<0.03	25 145327-B- 25	0.1 0.1 RPD:0	LCS-W1	94%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
1311)	1.00	1.00	1.000	1.000	1.00		10	1.00
Date extracted	e ê			04/05/2 016	[NT]	[T7]	LCS-W1	04/05/2016
Date analysed	1.2			04/05/2 016	[NT]	[TM]	LCS-W1	04/05/2016
Naphthalene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	70%
Acenaphthylene in TCLP	mg/L	0.001	Org-012	< 0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	Org-012	< 0.001	[NT]	[NT]	LCS-W1	76%
Phenanthrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	80%
Anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	78%
Pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	83%
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[TM]	[NR]	[NR]
Chrysene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	70%
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012	<0.002	[NT]	[TM]	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	91%
Indeno(1,2,3-c,d)pyrene -TCLP	mg/L	0.001	Org-012	<0.001	[NT]	נזאן	[NR]	[NR]
Dibenzo(a,h)anthracene inTCLP	mg/L	0.001	Org-012	<0.001	[NT]	[TM]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[דא]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	119	[NT]	נזאן	LCS-W1	94%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

From:	
Sent:	Tuesday, 3 May 2016 8:33 AM
To:	
Subject:	145327 E29319K, Wentworth Park South
Importance	High
importance:	nigh

Hi

Could we schedule the following additional testing from the above lab report on a standard turnaround please:

Envirolab Ref. 145327B Due: 1015116

Std TIA.

1 . BH1 (0.1-0.2m) TCLP PAHs; BH5 (0.7-1.0m) TCLP lead and PAHs; 14. 16. BH6 (0.0-0.2m) TCLP lead and PAHs: BH7 (0.0-0.2m) TCLP lead and PAHs; 19. 23. (0.5-0.7m) TCLP lead and PAHs; BH8 BH9 (0.0-0.2m) TCLP lead and PAHs; **BH10** (0.25-0.5m) TCLP lead and PAHs; 28. **BH11** (0.05-0.3m) TCLP lead and PAHs; 30. **BH12** (0.25-0.5m) TCLP lead and PAHs; 32 . **BH14** (0.0-0.2m) TCLP lead and PAHs; and 300 **BH15** (0.5-0.8m) TCLP lead and PAHs. 29.

Regards,

Environmental Scientist

www.jkgroup.net.au

Environmental Investigation Services CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS PO Box 976, North Ryde BC NSW 1670 115 Wicks Rd, Macquarie Park NSW 2113 T: +612 9888 5000 F: +612 9888 5001

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

CERTIFICATE OF ANALYSIS

145327-C

Client: Environmental Investigation Services PO Box 976 North Ryde BC NSW 1670

Attention:

Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received

E29319K, Wentworth Park South

Additional Testing on 2 Soils 21/04/2016 / 10/05/16

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

 Report Details:

 Date results requested by: / Issue Date:
 16/05/16
 / 12/05/16

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Laboratory Manager

Metals in TCLPUSEPA1311			
Our Reference:	UNITS	145327-C-22	145327-C-38
Your Reference		BH8	BH15
	-		
Depth		0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016
Type of sample		soil	soil
Date extracted	-	11/05/2016	11/05/2016
Date analysed	-	11/05/2016	11/05/2016
pH of soil for fluid# determ.	pH units	5.0	5.0
pH of soil TCLP (after HCI)	pH units	1.3	1.3
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.0	5.0
LeadinTCLP	mg/L	0.04	[NA]

PAHs in TCLP (USEPA 1311)			
Our Reference:	UNITS	145327-C-22	145327-C-38
Your Reference		BH8	BH15
	-		
Depth		0.0-0.2	0.0-0.2
Date Sampled		20/04/2016	20/04/2016
		501	501
Date extracted	-	11/05/2016	11/05/2016
Date analysed	-	11/05/2016	11/05/2016
Naphthalene in TCLP	mg/L	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001
AcenaphtheneinTCLP	mg/L	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	0.001
Anthracene in TCLP	mg/L	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001
Total +ve PAH's	mg/L	NIL(+)VE	0.001
Surrogate p-Terphenyl-d14	%	65	74

Client Reference: E29319K, Wentworth Park South

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Org-012	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

Client Reference: E29319K, Wentworth Park South								
QUALITY CONTROL Metals in TCLP USEPA1311	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Sp ke % Recovery
Date extracted				11/05/2 016	[TM]	[TM]	LCS-W1	11/05/2016
Date analysed				11/05/2 016	[NT]	[דא]	LCS-W1	11/05/2016
LeadinTCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]	[TV]	LCS-W1	102%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Sp ke %
PAHsin TCLP (USEPA 1311)					SIT#	Base II Duplicate II %RPD	10 C	Recovery
Date extracted	a t			11/05/2 016	[NT]	[TM]	LCS-W1	11/05/2016
Date analysed	12			11/05/2 016	[NT]	נזאן	LCS-W1	11/05/2016
Naphthalene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	66%
Acenaphthylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	72%
Phenanthrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	81%
Anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	[NR]	[NR]
FluorantheneinTCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	72%
Pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	75%
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	נדאין	[NR]	[NR]
Chrysene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	68%
Benzo(bjk)fluoranthene inTCLP	mg/L	0.002	Org-012	<0.002	[NT]	נדאן	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[NT]	LCS-W1	71%
Indeno(1,2,3-c,d)pyrene -TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[דא]	[NR]	[NR]
Dibenzo(a,h)anthracene inTCLP	mg/L	0.001	Org-012	<0.001	[NT]	[TV]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012	<0.001	[NT]	[דא]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	72	[NT]	נדאן	LCS-W1	74%

Report Comments: Analysed outside of holding time

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

From: Sent: To: Subject:

Tuesday, 10 May 2016 8:24 AM

145327-B E29319K, Wentworth Park South

38

Importance:

High

Hi

145327-C Could we please schedule additional analysis of the below samples from the above lab report:

- BH8 (0.0-0.2m) TCLP lead and PAHs; and -22
- BH15 (0.0-0.2m) TCLP PAHs

Regards,

Environmental Scientist

www.ikgroup.net.au

Environmental Investigation Services CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS PO Box 976, North Ryde BC NSW 1670 115 Wicks Rd, Macquarie Park NSW 2113 T: +612 9888 5000 F: +612 9888 5001

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

16-18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC, Western Australia 6950 tel: +61 8 9317 2505

email: lab@mpl.com.au envirolab.com.au

Envirolab Services (WA) Pty Ltd trading as MPL Laboratories | ABN 53 140 099 207

CERTIFICATE OF ANALYSIS 179923

Client: Environmental Investigation Services 115 Wicks Road MACQUARIE PARK NSW 2113

Attention:

Sample log in details:	
Your Reference:	E29319K
No. of samples:	1 Soil
Date samples received:	27/04/2016
Date completed instructions received:	27/04/2016
Location:	

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last pages of this report for any comments relating to the results.*

Report Details:	
Date results requested by:	3/05/16
Date of Preliminary Report:	Not issued
Issue Date:	2/05/16
NATA accreditation number 2901. This docu	ment shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 170	25.
Tests not covered by NATA are denoted v	with *.

Results Approved By:

Operations Manager

MPL Reference: Revision No:

svTRH(C10-C36) in soil		
Our Reference:	UNITS	179923-1
Your Reference		DUPGFS2
Type of sample		Soil
Date extracted	-	28/04/2016
Date analysed	-	28/04/2016
TRHC 10 - C 14	mg/kg	<50
TRHC15 - C28	mg/kg	<100
TRHC29 - C36	mg/kg	<100
TRH>C10 - C16	mg/kg	<50
TRH>C10-C16 less N (F2)	mg/kg	<50
TRH>C16 - C34	mg/kg	130
TRH>C34 - C40	mg/kg	<100
Surrogate o-Terphenyl	%	98

vTRH(C6-C10)/MBTEXN in soil		
Our Reference:	UNITS	179923-1
Your Reference		DUPGFS2
Type of sample		Soil
Date extracted	-	28/04/2016
Date analysed	-	29/04/2016
TRHC6 - C9	mg/kg	<25
TRHC6 - C10	mg/kg	<25
TRHC6-C10 less BTEX (F1)	mg/kg	<25
MTBE	mg/kg	<0.5
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-xylene	mg/kg	<1
Naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	91

PAHs in Soil		
Our Reference:	UNITS	179923-1
Your Reference		DUPGFS2
Type of sample		Soil
Date extracted	-	28/04/2016
Date analysed	-	29/04/2016
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	0.1
Phenanthrene	mg/kg	1.5
Anthracene	mg/kg	0.4
Fluoranthene	mg/kg	4.2
Pyrene	mg/kg	4.0
Benzo(a)anthracene	mg/kg	2.0
Chrysene	mg/kg	1.8
Benzo(b,j+k)fluoranthene	mg/kg	3.9
Benzo(a)pyrene	mg/kg	2.1
Indeno(1,2,3-c,d)pyrene	mg/kg	1.2
Dibenzo(a,h)anthracene	mg/kg	0.2
Benzo(g,h,i)perylene	mg/kg	1.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	3.1
Benzo(a)pyrene TEQ calc(half)	mg/kg	3.1
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	3.1
Total Positive PAHs	mg/kg	23
p-Terphenyl-D14	%	105

Acid Extractable metals in soil		
Our Reference:	UNITS	179923-1
Your Reference		DUPGFS2
Type of sample		Soil
Date digested	-	28/04/2016
Date analysed	-	5/02/2016
Arsenic	mg/kg	5
Cadmium	mg/kg	0.5
Chromium	mg/kg	11
Copper	mg/kg	34
Lead	mg/kg	150
Mercury	mg/kg	0.4
Nickel	mg/kg	7
Zinc	mg/kg	900

Organochlorine Pesticides in soil		
Our Reference:	UNITS	179923-1
Your Reference		DUPGFS2
Type of sample		Soil
Date extracted	-	28/04/2016
Date analysed	-	29/04/2016
Hexachlorobenzene (HCB)	mg/kg	<0.1
a-BHC	mg/kg	<0.1
b-BHC	mg/kg	<0.1
Lindane (g-BHC)	mg/kg	<0.1
d-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
a-Chlordane	mg/kg	<0.1
g-Chlordane	mg/kg	<0.1
a-Endosulphan	mg/kg	<0.1
<i>p,p'-</i> DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
<i>p,p</i> `-DDD	mg/kg	<0.1
b-Endosulphan	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
p,p'-DDT	mg/kg	<0.1
Endrin Ketone	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1

Organophosphorus Pesticides		
Our Reference:	UNITS	179923-1
Your Reference		DUPGFS2
Type of sample		Soil
Date extracted	-	28/04/2016
Date analysed	-	29/04/2016
Diazinon (Dimpylate)	mg/kg	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion (Maldison)	mg/kg	<0.1
Chlorpyrifos (ethyl)	mg/kg	<0.1
Parathion (ethyl)	mg/kg	<0.1
Ethion	mg/kg	<0.1
Bromophos Ethyl	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Azinphos Methyl (Guthion)	mg/kg	<0.1
p-Terphenyl-D14	%	105

UNITS	179923-1
	DUPGFS2
	Soil
-	28/04/2016
-	29/04/2016
mg/kg	<0.1
	-0.1
	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

E29319K **Client Reference:**

Moisture		
Our Reference:	UNITS	179923-1
Your Reference		DUPGFS2
Type of sample		Soil
Date prepared	-	28/04/2016
Date analysed	-	29/04/2016
Moisture	%	23

MPL Reference: **Revision No:** R 00

179923

Method ID	MethodologySummary
ORG-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
ORG-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
ORG-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM draft B1 Guideline on Investigation Levels for Soil and Groundwater.
ORG-012	 For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" bute="" calculation="" conservative="" contr="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
ORG-004	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
METALS-020	Metals in soil and water by ICP-OES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
ORG-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
ORG-008/015	Organophosphorus Pesticides in soil by DCM:Acetone extraction and water by DCM extraction with determination by GC-ECD/GC-MS.
ORG-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
ORG-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Moisture content determined by heating at 105 deg C for a minimum of 12 hours.

INORG-008

	Client Reference: E29319K								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
svTRH(C10-C36) in soil						Base II Duplicate II % RPD			
Date extracted	-			28/04/ 2016	[NT]	[NT]	LCS-1	28/04/2016	
Date analysed	-			28/04/ 2016	[NT]	[NT]	LCS-1	28/04/2016	
TRHC 10 - C 14	mg/kg	50	ORG-003	<50	[NT]	[NT]	LCS-1	98%	
TRHC 15 - C28	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	117%	
TRHC29 - C36	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	106%	
TRH>C10 - C16	mg/kg	50	ORG-003	<50	[NT]	[NT]	LCS-1	110%	
TRH>C16 - C34	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	114%	
TRH>C34 - C40	mg/kg	100	ORG-003	<100	[NT]	[NT]	LCS-1	111%	
Surrogate o-Terphenyl	%		ORG-003	99	[NT]	[NT]	LCS-1	101%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike	Spike %	
vTRH(C6-C10)/MBTEXN in soil						Base II Duplicate II %RPD	Sm#	Recovery	
Date extracted	-			28/04/ 2016	[NT]	[NT]	LCS-1	28/04/2016	
Date analysed	-			29/04/ 2016	[NT]	[NT]	LCS-1	29/04/2016	
TRHC6 - C9	mg/kg	25	ORG-016	<25	[NT]	[NT]	LCS-1	93%	
TRHC6 - C10	mg/kg	25	ORG-016	<25	[NT]	[NT]	LCS-1	93%	
MTBE	mg/kg	0.5	ORG-016	<0.5	[NT]	[NT]	[NR]	[NR]	
Benzene	mg/kg	0.2	ORG-016	<0.2	[NT]	[NT]	LCS-1	95%	
Toluene	mg/kg	0.5	ORG-016	<0.5	[NT]	[NT]	LCS-1	94%	
Ethylbenzene	mg/kg	1	ORG-016	<1	[NT]	[NT]	LCS-1	88%	
m+p-xylene	mg/kg	2	ORG-016	~2	[NT]	[NT]	LCS-1	94%	
o-xylene	mg/kg	1	ORG-016	<1	[NT]	[NT]	LCS-1	87%	
Naphthalene	mg/kg	1	ORG-016	<1	[NT]	[NT]	[NR]	[NR]	
<i>Surrogate</i> aaa- Trifluorotoluene	%		ORG-016	104	[NT]	[NT]	LCS-1	101%	

		Clie	ent Reference	ce: t	-29319K		_	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike	Spike %
PAHs in Soil						Base II Duplicate II % RPD	Sm#	Recovery
Date extracted	-			28/04/ 2016	[NT]	[NT]	LCS-1	28/04/2016
Date analysed	-			29/04/ 2016	[NT]	[NT]	LCS-1	29/04/2016
Naphthalene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	98%
Acenaphthylene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	100%
Phenanthrene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	93%
Anthracene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	103%
Pyrene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	103%
Benzo(a)anthracene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	100%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	ORG-012	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	ORG-012	<0.05	[NT]	[NT]	LCS-1	106%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]
p-Terphenyl-D14	%		ORG-012	101	[NT]	[NT]	LCS-1	101%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike	Spike %
Acid Extractable metals in soil						Base II Duplicate II %RPD	Sm#	Recovery
Date digested	-			5/02/2 016	[NT]	[NT]	LCS-1	5/02/2016
Date analysed	-			5/02/2 016	[NT]	[NT]	LCS-1	5/02/2016
Arsenic	mg/kg	2	METALS- 020	<2	[NT]	[NT]	LCS-1	95%
Cadmium	mg/kg	0.4	METALS- 020	<0.4	[NT]	[NT]	LCS-1	100%
Chromium	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	101%
Copper	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	105%
Lead	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	100%
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]	[NT]	LCS-1	96%
Nickel	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	102%
Zinc	mg/kg	1	METALS- 020	<1	[NT]	[NT]	LCS-1	100%

	Client Reference: E29319K								
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Organochlorine Pesticides in soil						Base II Duplicate II %RPD			
Date extracted	-			28/04/ 2016	[NT]	[NT]	LCS-1	28/04/2016	
Date analysed	-			29/04/ 2016	[NT]	[NT]	LCS-1	29/04/2016	
Hexachlorobenzene (HCB)	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
a-BHC	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	102%	
b-BHC	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	115%	
Lindane (g-BHC)	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
d-BHC	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
Heptachlor	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	99%	
Aldrin	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	99%	
Heptachlor Epoxide	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	108%	
a-Chlordane	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
g-Chlordane	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
a-Endosulphan	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
p,p'-DDE	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	107%	
Dieldrin	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	101%	
Endrin	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	88%	
p,p`-DDD	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
b-Endosulphan	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
Endrin Aldehyde	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
Endosulfan Sulphate	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	LCS-1	126%	
<i>р,р'-</i> DDT	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
Endrin Ketone	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	
Methoxychlor	mg/kg	0.1	ORG-012	<0.1	[NT]	[NT]	[NR]	[NR]	

	Client Reference: E29319K								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
Organophosphorus Pesticides						Base II Duplicate II % RPD			
Date extracted	-			28/04/ 2016	[NT]	[NT]	LCS-1	28/04/2016	
Date analysed	-			29/04/ 2016	[NT]	[NT]	LCS-1	29/04/2016	
Diazinon (Dimpylate)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]	
Chlorpyrifos-methyl	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	LCS-1	121%	
Ronnel	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]	
Fenitrothion	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	LCS-1	138%	
Malathion (Maldison)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]	
Chlorpyrifos (ethyl)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	LCS-1	119%	
Parathion (ethyl)	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]	
Ethion	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]	
Bromophos Ethyl	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]	
Dimethoate	mg/kg	0.1	ORG- 008/015	<0.1	[NT]	[NT]	[NR]	[NR]	
Dichlorvos	mg/kg	0.1	ORG-008	<0.1	[NT]	[NT]	[NR]	[NR]	
Azinphos Methyl (Guthion)	mg/kg	0.1	ORG-008	<0.1	[NT]	[NT]	[NR]	[NR]	
p-Terphenyl-D14	%		ORG- 008/015	101	[NT]	[NT]	LCS-1	101%	

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike	Spike %
PCBs in Soil	100		(*************************************			Base II Duplicate II %RPD	Sm#	Recovery
Date extracted				28/04/ 2016	[17]	[NT]	LCS-1	28/04/201
Date analysed	->			29/04/ 2016	[17]	[NT]	LCS-1	29/04/201
Arochlor 1016	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1260	mg/kg	0.1	ORG-006	<0.1	[NT]	[NT]	[NR]	[NR]
UALITYCONTROL loisture	UNITS	PQL	METHOD	Blank				
Date prepared			0	28/04/ 2016	1			
Date analysed	÷			29/04/ 2016				
Moisture	%	0.1	INORG-008	<0.10				-
QUALITY CONTROL svTRH(C10-C36) in sc	. UNF pil	IS	Dup. Sm#	Base	Duplicate + Duplicate + %RP	Spike Sm#	Sp ke % Rec	overy
Date extracted	-	<1.7	[NT]		[NT]	179923-1	28/04/20	16
Date analysed			INTI		INTI	179923-1	28/04/20	16
TRHC10 - C14	ma	ka	INTI		INTI	179923-1	94%	
	ma	ka	INITI		INITI	170023-1	120%	
TRICIS-C28	ing/	ng Isa	D TT	-	[N]	179923-1	120 %	
TRHC29 - C36	mg/	ĸg			[[N1]	179923-1	89%	
TRH>C10 - C16	mg/	kg	[N1]			1/9923-1	107%	
TRH>C16 - C34	mg/	kg	[NT]		[NT]	179923-1	122%	
TRH>C34 - C40	mg/	kg	[NT]		[NT]	179923-1	89%	
Surrogate o-Terpheny	yl %	5	[NT]		[NT]	179923-1	108%	
QUALITYCONTROL vTRH(C6-C10)/MBTEXN soil	. UNI Nin	TS	Dup. Sm#	Base	Duplicate + Duplicate + %RP	Spike Sm# D	Sp ke % Rec	overy
Date extracted	-		[NT]		[NT]	179923-1	28/04/20	16
Date analysed	- 4		[NT]		[NT]	179923-1	29/04/20	16
TRHC6 - C9	ma/	kg	[NT]		[NT]	179923-1	92%	
TRHC6 - C10	ma/	kg	INTI		INTI	179923-1	92%	
MIBE	ma/	kg	INTI		INTI	INRI	INRI	
Benzene	ma	ka	INTI		INTI	179923-1	03%	
Tolueno	ma	ka	INTI		INTI	170023-1	020%	
Ethylasses	mg/	ka	IVITI IVITI		[UVI]	470000 4	3Z70	
Eurly benzene	mg/	NY				179923-1	88%	
m+p-xylene	mg/	ĸg				179923-1	93%	
o-xylene	mg/	kg	[NT]		[NT]	179923-1	92%	

MPL Reference: Revision No:

Client Reference: E29319K									
QUALITYCONTROL vTRH(C6-C10)/MBTEXNin soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery				
Naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	179923-1	92%				
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery				
Date extracted		[NT]	[NT]	179923-1	28/04/2016				
Date analysed	÷	[NT]	[NT]	179923-1	29/04/2016				
Naphthalene	mg/kg	[NT]	[NT]	179923-1	108%				
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Fluorene	mg/kg	[NT]	[NT]	179923-1	125%				
Phenanthrene	mg/kg	[NT]	[NT]	179923-1	*				
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Fluoranthene	mg/kg	[NT]	[NT]	179923-1					
Pyrene	mg/kg	[NT]	[NT]	179923-1					
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Chrysene	mg/kg	[NT]	[NT]	179923-1	*				
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Benzo(a)pyrene	mg/kg	[NT]	[NT]	179923-1					
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]				
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]				
p-Terphenyl-D14	%	[NT]	[NT]	179923-1	106%				

		Client Referen	ce: E29319K		
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery
Date digested	1	[NT]	[NT]	179923-1	28/04/2016
Date analysed		[NT]	[NT]	179923-1	5/02/2016
Arsenic	mg/kg	INT	INTI	179923-1	99%
Cadmium	mg/kg	INT	[NT]	179923-1	97%
Chromium	mg/kg	INT	[NT]	179923-1	107%
Copper	mg/kg	INT	INTI	179923-1	127%
Lead	mg/kg	INT	[NT]	179923-1	130%
Mercury	mg/kg	INT	INTI	179923-1	103%
Nickel	mg/kg	INTI	INT	179923-1	103%
Zinc	mg/kg	[NT]	[NT]	179923-1	127%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery
Date extracted	- 4	[NT]	[NT]	179923-1	28/04/2016
Date analysed	÷	[NT]	[NT]	179923-1	29/04/2016
Hexachlorobenzene (HCB)	mg/kg	[NT]	[NT]	[NR]	[NR]
a-BHC	mg/kg	[NT]	[NT]	179923-1	106%
b-BHC	mg/kg	[NT]	[NT]	179923-1	111%
Lindane (g-BHC)	mg/kg	[NT]	[NT]	[NR]	[NR]
d-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Heptachlor	mg/kg	[NT]	[NT]	179923-1	109%
Aldrin	mg/kg	[NT]	[NT]	179923-1	109%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	179923-1	115%
a-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
g-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
a-Endosulphan	mg/kg	[NT]	[NT]	[NR]	[NR]
p,p'-DDE	mg/kg	[NT]	[NT]	179923-1	115%
Dieldrin	mg/kg	[NT]	[NT]	179923-1	109%
Endrin	mg/kg	[NT]	[NT]	179923-1	111%
p,p`-DDD	mg/kg	[NT]	[NT]	[NR]	[NR]
b-Endosulphan	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	179923-1	137%
p,p'-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Ketone	mg/kg	[NT]	[NT]	[NR]	[NR]
Methoxychlor	ma/ka	INTI	INTI	INRI	INRI

MPL Reference: Revision No:
		Client Referen	ce: E29319K		
QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery
Date extracted	1.00	[NT]	[NT]	179923-1	28/04/2016
Date analysed	1.1	[NT]	[NT]	179923-1	29/04/2016
Diazinon (Dimpylate)	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyrifos-methyl	mg/kg	[NT]	[NT]	179923-1	130%
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Fenitrothion	mg/kg	[NT]	[NT]	[NR]	[NR]
Malathion (Maldison)	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyrifos (ethyl)	mg/kg	[NT]	[NT]	179923-1	127%
Parathion (ethyl)	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromophos Ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	[NR]	[NR]
Azinphos Methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]
p-Terphenyl-D14	%	[NT]	[NT]	179923-1	106%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Sp ke % Recovery
Date extracted	÷	[NT]	[NT]	179923-1	28/04/2016
Date analysed	÷	[NT]	[NT]	179923-1	29/04/2016
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	mg/kg	[NT]	[NT]	[NR]	[NR]
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]

Report Comments:

* Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

Asbestos Signatories:

Asbestos was analysed by Approved Identifier: Not applicable for this job Airborne fibres were analysed by Approved Counter: Not applicable for this job

Definitions:

NT: Not tested NA: Test not required INS: Insufficient sample for this test PQL: Practical Quantitation Limit <: Less than >: Greater than RPD: Relative Percent Difference LCS: Laboratory Control Sample NS: Not Specified NEPM: National Environmental Protection Measure NR: Not Reported

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Part of the Envirolab Group

16 - 18 Hayden Court, Myaree, Western Australia 6 154 PO Box 4023 Myaree BC, Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.mpl.com.au Enviroleb Services (WA) Pty Ltd ABN 53 140 099 207

SAMPLE RECEIPT ADVICE

Client Details	the second second second second second second	
Client	Environmental Investigation Services	
Attention		

Sample Login Details					
Your Reference	E29319K				
Envirolab Reference	179923	_			
Date Sample Received	27/04/2016				
Date Instructions Received	27/04/2016				
Date Results Expected to be Reported	03/05/2016				

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on receipt (°C)	18
Cooling Method	Ice Pack
Sampling Date Provided	Not Provided on COC

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Phone:	Phone:
Fax:	Fax:
Email:	Email:

Sample and Testing Details on following page

16 - 18 Hayden Court, Myaree, Western Australia 6154 PO Box 4023 Myaree BC. Western Australia 6960 Tel: +61 8 9317 2505 / Fax: +61 8 9317 4163 email: laboratory@mpl.com.au www.mpl.com.au Envirolab Services (WA) Pty Ltd ABN 53 140 099 207

Sample Id	svTRH(C10-C36) in soil	vTRH(C6- C10)/MBTEXN in soil	PAHs in Soil	Acid Extractable metals in soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil
DUP G FS2	1	1	1	1	1	1	1

TO: ENVIROLAE 12 ASHLEY CHATSWOO P: (02) 991 F: (02) 991 Attention:	SSERV STREE DD NSV 06200 06201	ICES PTY LTI ET W 2067	D	EIS Job Number Date Re Require Page:	esults d:	E29319K STANDAF Z = f	2			FROM: ENVIRON INVESTIC SERVICE REAR OF MACQUA P: 02-98 Attention	IMENT, SATION S 115 V ARIE PA 88 500	AL J VICKS ARK, I	ROA NSW F: 0	D 2113 2-988	8 500	15	
Location:	Went	worth Park S	outh	and a		CEP-101			Sam	ple Preser	ved in I	Esky	on Ice	1			1
Sampler:	GF+	NC		19155	1				-	Tests	Requir	ed	_	_			1
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description		Combo 6	Combo 6a			BTEX	Asbestos				
20/4/16	26	BH9	0.5-	GA	0	Fill									-		
1	27	4	137.5	1	0	1											
	28	BHIO	025-5		0				X								
	29	4	1.17.3		0						10		30	1		1	1
	30	BH 11	0.053		0				X		1	Lal	porat	ories		envi	ROL
	31	+	0.8-		0						Jo	b No		170	192	3	_
	32	DH12	0.255		0				×		D	ite R	90-	27	D		
	33	+	1.37.5		0						Re	c By	- 20	m	C		
	341	BH 13	0-0.2		0				X		TA	TRe	9-5	ME	1/2	136	TR
	35	4	0.5-		0				1		Te	np -	cool	amh	ent	-	-
	36	BH14	0.2		0				×		Sa	oling aurih	See	(Ice	pack	/No	10
	37	+	0.750		0			185			Anima		006	U	ET INC		
-	350	BH 15	00.2		D											-	
	39		0.56.8		0				X								
	40	+	1.315	+	0	+											
	41	Rp 6FS1	-	4	-	50:1											
	×	ROGFSZ	12 Sant	ant	-	1		X	1								
	42	Riph F33	-		-			X									
*	43	TBS	-	+	-	4						X					
											Í	1					
															1		
													1				
													-		-		
marks (com Pease 53ter 1	ments/	detection limi	its required): pGFJ (rter le	z-te	, En Ap	viblad	Sample C G - 250m A - Ziploc P - Plastic	ontainer g Glass k Asbes Bag	s: Jar tos Ba	g						-	
jinauished B	W!			Zu/	4/16	>	Time: 15%	21	R	eceived By	/:		2	Date: 21 4 170	116		

22/04/16

145327

Unit 3-5/18 Redland Drive Mitcham, VIC, 3132 Telephone (03) 9874 1988 Fax (03) 9874 1933

19 May 2016

Environmental Investigation Services 115 Wicks Road Macquarie Park NSW 2113

Dear

Please find the attached replacement report for M160871 which is numbered M160871R1.

The report has been reissued with TPH NEPM results as requested by the client. Please destroy the Original Report.

If you have any questions regarding this please contact me on

Thank-you

Regards,

Business Manager

SGS Leeder Consulting

A.B.N. 44 000 964 278 3 - 5, 18 Redland Drive Mitcham, Vic, 3132 Telephone: (03) 9874 1988 Fax: (03) 9874 1933

Chartered Chemists

19-May-2016

Environmental Investigation Services

115 Wicks Road Macquarie Park

New South Wales 2113 Attention:

REPORT NUMBER: M160871R1

Site/Client Ref: Wentworth Park, Ultimo Order No: E29319K

CERTIFICATE OF ANALYSIS

This report replaces previous report dated 17-May-2016

SAMPLES:

Five samples were received for analysis

DATE RECEIVED:

DATE COMMENCED:

METHODS:

See Attached Results

9-May-2016

9-May-2016

RESULTS:

Please refer to attached pages for results.

Note: Results are based on samples as received at SGS Leeder Consulting's laboratories

REPORTED BY:

Senior Chemist

NATA Accredited Laboratory Number: 14429

Accredited for compliance with ISO/IEC 17025.

The sampling for the samples in this report was carried out in accordance with SGS Leeder Consulting's NATA accredited sampling methods

ANALYTICAL RESULTS

Matrix: Passive Sampler Method: MA-5.WL.04 Volatile Organics Sample units are expressed in µg/m³

	Leeder ID	2016013284	2016013285	2016013286	2016013287	2016013288
	Client ID	PSV10 1601-AN-LU-052	PSV13 1601-AN-LU-053	PSV7 1601-AN-LU-054	PSV5 1601-AN-LU-055	PSV5 Field Dup 1601-AN-LU-056
Analyte Name	Sampled Date	5/05/2016	5/05/2016	5/05/2016	5/05/2016	5/05/2016
	PQL					
Benzene		<3.7	<3.7	<3.7	<3.7	<3.7
2-butanone(MEK)		<7.2	<7.2	<7.2	<7.2	<7.2
Carbon tetrachloride		<5.8	<5.8	<5.8	<5.8	<5.8
Chlorobenzene		<2.2	<2.2	<2.2	<2.2	<2.2
Chloroform		<4.6	<4.6	<4.6	<4.6	<4.6
12-Dichlorobenzene		<1.2	<1.2	<1.2	<1.2	<1.2
13-Dichlorobenzene		<1.4	<1.4	<1.4	<1.4	<1.4
14-Dichlorobenzene		<1.3	<1.3	<1.3	<1.3	<1.3
1,1-Dichloroethane		<9.3	<9.3	<9.3	<9.3	<9.3
12-Dichloroethane		<3.7	<3.7	<3.7	<3.7	<3.7
1,1-Dichloroethene		<11	<11	<11	<11	<11
cis-1,2-Dichloroethene		<4.7	<4.7	<4.7	<4.7	<4.7
trans-1,2-Dichloroethen	e	<4.9	<4.9	<4.9	<4.9	<4.9
Ethylbenzene		3.5	<2.0	<2.0	<2.0	<2.0
Hexane		47	<4.9	9.0	<4.9	5.7
Isopropylbenzene		<0.96	<0.96	<0.96	<0.96	<0.96
Naphthalene		<2.5	<2.5	57	<2.5	<2.5
Tetrachloroethene		<2.2	<2.2	<2.2	<2.2	<2.2
Toluene		11	3.8	13	3.5	3.8
111-Trichloroethane		<7.2	<7.2	<7.2	<7.2	<7.2
112-Trichloroethane		<2.8	<2.8	<2.8	<2.8	<2.8
Trichloroethene		<2.8	<2.8	<2.8	<2.8	<2.8
124-Trimethylbenzene		16	<1.4	2.7	<1.4	<1.4
Vinyl Chloride		<18	<18	<18	<18	<18
o-Xylene		7.4	<2.1	3.2	<2.1	<2.1
m&p-Xylenes		15	<2.1	5.6	<2.1	<2.1
Dichlorodifluoromethan	e	<49	<49	<49	<49	<49
Trichlorofluoromethane		<18	<18	<18	<18	<18
124-Trichlorobenzene		<2.0	<2.0	<2.0	<2.0	<2.0
123-Trichlorobenzene		<1.2	<1.2	<1.2	<1.2	<1.2
Halothane		<17	<17	<17	<17	<17

ANALYTICAL RESULTS

Matrix: Passive Sampler Method: MA-5.WL.03 Volatile Organics Sample units are expressed in µg total

	Leeder ID	2016013289
	Client ID	Method
Analyte Name S	ampled Date	
	PQL	Blank
Benzene	0.05	nd
2-butanone(MEK)	0.05	nd
Carbon tetrachloride	0.05	nd
Chlorobenzene	0.05	nd
Chloroform	0.05	nd
12-Dichlorobenzene	0.05	nd
13-Dichlorobenzene	0.05	nd
14-Dichlorobenzene	0.05	nd
1,1-Dichloroethane	0.05	nd
12-Dichloroethane	0.05	nd
1,1-Dichloroethene	0.05	nd
cis-1,2-Dichloroethene	0.05	nd
trans-1,2-Dichloroethene	0.05	nd
Ethylbenzene	0.05	nd
Hexane	0.05	nd
Isopropylbenzene	0.05	nd
Naphthalene	0.05	nd
Tetrachloroethene	0.05	nd
Toluene	0.05	nd
111-Trichloroethane	0.05	nd
112-Trichloroethane	0.05	nd
Trichloroethene	0.05	nd
124-Trimethylbenzene	0.05	nd
Vinyl Chloride	0.05	nd
o-Xylene	0.05	nd
m&p-Xylenes	0.05	nd
Dichlorodifluoromethane	0.05	nd
Trichlorofluoromethane	0.05	nd
124-Trichlorobenzene	0.05	nd
123-Trichlorobenzene	0.05	nd
Halothane	0.05	nd

ANALYTICAL RESULTS

Matrix: Passive Sampler

Method: MA-30.AIR.04 Total Recoverable Hydrocarbons

Sample units are expressed in mg/m³

Analyte Name Sam	Leeder ID Client ID pled Date	2016013284 PSV10 1601-AN-LU-052 5/05/2016	2016013285 PSV13 1601-AN-LU-053 5/05/2016	2016013286 PSV7 1601-AN-LU-054 5/05/2016	2016013287 PSV5 1601-AN-LU-055 5/05/2016
	PQL				
C6-C10 (ex BTEX)		2.8	<0.5	1.3	<0.5
>C10-C16 (less Naphthalene)		12	8.9	18	1.7

Matrix: Passive Sampler

Method: MA-30.AIR.03 Total Recoverable Hydrocarbons Sample units are expressed in μg total

L	eeder ID	2016013289
	Client ID	Method
Analyte Name Samp	led Date	
	PQL	Blank
C6-C10 (ex BTEX)	5	nd
>C10-C16 (less Naphthalene)	5	nd

Test Started: 12/05/2016

QA/QC RESULTS

Matrix: Passive Sampler

Method: MA-5.WL.03 Volatile Organics

Quality Control Results are expressed in Percent Recovery of expected result

2016013290 2016013291 Leeder ID **Client ID** Method Method Analyte Name Sampled Date PQL Spike Dup Spike Benzene 99 101 Chlorobenzene 98 97 12-Dichlorobenzene 100 102 13-Dichlorobenzene 105 105 14-Dichlorobenzene 96 100 Ethylbenzene 97 97 Toluene 99 97 o-Xylene 98 99 m&p-Xylenes 99 99

QUALIFIERS / NOTES FOR REPORTED RESULTS

- PQL Practical Quantitation Limit
- nd Not Detected The analyte was not detected above the reported PQL.
- is Insufficient Sample to perform this analysis.
- T Tentative identification based on computer library search of mass spectra.
- NC Not calculated and/or Results below PQL
- NV No Vacuum, Canister received above standard atmospheric pressure
- nr Not Requested for analysis.
- R Rejected Result results for this analysis failed QC checks.
- SQ Semi-Quantitative result quantitation based on a generic response factor for this class of analyte.
- IM Inappropriate method of analysis for this compound
- U Unable to provide Quality Control data high levels of compounds in sample interfered with analysis of QC results.
- UF Unable to provide Quality Control data- Surrogates failed QCchecks due to sample matrix effects
- L Analyte detected at a level above the linear response of calibration curve.
- E Estimated result. NATA accreditation does not cover estimated results.
- C1 These compounds co-elute.
- -- Parameter Not Determined
- CT Elevated concentration. Results reported from carbon tube analysis
- ** Sample shows non-petroleum hydrocarbon profile

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Tems-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other hold er of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents

This report must not be reproduced, except in full.

APPENDIX ONE.

CHAIN OF CUSTODY DOCUMENT

Page 1 of 1	الماطمور Air المطمور Air Workplace Monitoring Other (كالدها)	sther Pescription: Ambren Daily y, good als.
RULING	Turn Around Tin Normal: Rapid: (surcharges appl) Specify: (day Specify: (day 11 11 11	Air Temp and We. ~20 ~ 26 Notes:
CONSI	An Park. 871 Park. Park Contract Contra	ч А
0	Number: Number: Number: Newhungth Date of Retrieval S/S/16 1 4 4 4	ate/Time ate/Time
SG Email report to	Project Info Purchase Order Suburb & State Project Number Project Name: Time of Deployment 11:28 11:28 11:40 11:52	me Signature D ne, Signature, D
	Active Porte Deployment 14/16 11/16	eceived by: Nar eceived by: Nar
933	city //al Sampler I.D (WMS Code) (UNS Code) (01-AN-UJ-052 056 056	e/Time R e/Time R R
Redland Drive /IC 3132 174 1988 Fax: (03) 9874 1	y: (Print and Sign) Post Code Fax: Field Sample I.D. (Location) PSV 10 PSV 13 PSV 13 P	d Rv. Nama Signature, Dati e By: Name, Signature, Dati
Unit 4, 18 Mitcham V Ph: (03) 98	Sampled by Company Address Phone: ABN: Lab ID	kelinauisher kelinquisher telinquisher

PF-AU-ENV-MIT-QU-142.xls / Ver 2 / 29.01.2015 / Page 1 of 1

- 10.

From: Sent: Tuesday, 17 May 2016 3:37 PM To: AU.SampleReceipt.Mitcham (Melbourne) Subject: RE: SRA For Wentworth Park, Ultimo Our Ref M160871

Hi

As per our phone conversation could we please get all of the samplers (except PSV5 DUP) analysed for TRH/TPH (NEPM Fractions) as well as the requested VOCs. Please call if you require anything further

Regards,

Environmental Scientist

www.jkgroup.net.au

Environmental Investigation Services CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS PO Box 976, North Ryde BC NSW 1670 115 Wicks Rd, Macquarie Park NSW 2113 T: +612 9888 5000 F: +612 9888 5001

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

Appendix D: Report Explanatory Notes

STANDARD SAMPLING PROCEDURE

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by EIS.

The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

Soil Sampling

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The work area should be at a distance from the drill rig/excavator such that the machine can operate in a safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the EIS job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-1993²¹.
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

Decontamination Procedures for Soil Sampling Equipment

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - Stiff brushes; and
 - Plastic sheets.

²¹ Standards Australia, (1993), *Geotechnical Site Investigations*. (AS1726-1993)

- Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.
- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

Groundwater Sampling

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells (well development) to remove any water introduced during the drilling process and/or the water that is disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casing and well.
- Take the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micropurge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment generally required includes:
 - Micropore filtration system or Stericup single-use filters (for heavy metals samples);
 - > Filter paper for Micropore filtration system; Bucket with volume increments;
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - Flow cell;
 - pH/EC/Eh/T meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;

- Low flow pump pack and associated tubing; and
- Groundwater sampling forms.
- If single-use stericup filtration is not used, clean the Micropore filtration system thoroughly with distilled water prior to use and between each sample. Filter paper should be changed between samples. 0.45um filter paper should be placed below the glass fibre filter paper in the filtration system.
- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow/micro-purge sampling equipment to reduce the disturbance of the water column and loss of volatiles.
- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential and groundwater levels are monitored (where possible) using calibrated field instruments to assess the development of steady state conditions. Steady state conditions are generally considered to have been achieved when the difference in the pH measurements was less than 0.2 units and the difference in conductivity was less than 10%.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements detailed in the NEPM 2013 and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage in an insulated sample container with ice as outlined in the report text.
- Record the sample on the appropriate log in accordance with AS1726:1993. At the end of each water sampling complete a chain of custody form.

Decontamination Procedures for Groundwater Sampling Equipment

- All equipment associated with the groundwater sampling procedure (other than single-use items) should be decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent;
 - Potable water;
 - Distilled water; and
 - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head using brushes in the bucket containing detergent until all materials attached to the equipment are removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC DEFINITIONS

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994²²) methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (H. Keith 1991²³).

Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection limit (MDL) for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations.

"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" Keith 1991.

Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD). Acceptable targets for precision in this report will be less than 50% RPD for concentrations greater than ten times the PQL, less than 75% RPD for concentrations between five and ten times the PQL and less than 100% RPD for concentrations that are less than five times the PQL.

Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured. The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes.

The proximity of an averaged result to the true value, where all random errors have been statistically removed. Accuracy is measured by percent recovery. Acceptable limits for accuracy generally lie between 70% to 130% recoveries. Certain laboratory methods may allow for values that lie outside these limits.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

²² US EPA, (1994), SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

²³ Keith., H, (1991), *Environmental Sampling and Analysis, A Practical Guide*.

Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms; Sample receipt form;
- All sample results reported; All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

Comparability

Comparability is the evaluation of the similarity of conditions (eg. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

<u>Blanks</u>

The purpose of laboratory and field blanks is to check for artifacts and interferences that may arise during sampling and analysis.

Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

Duplicates

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix E: Field Work Documents

EIS

Job No: E29319K Address: Wentworth Park South Recorded by: GF Monitoring Well No: 6 Weather Conditions: SWL (m): Dry PID (ppm): 0 Pressure (hPa): 021

Time	Pressure	CH4	CO2	02	CH4	H2S	со	DP	Flow Measurements
		%v/v	%v/v	%v/v	%LEL	ppm	ppm	Pa	L/H
30 sec	IOZI	0	[4.]	2.1	<	0	0	0	Ð
1min	-	0	143	20	<	0	0	ð	Ø
1 min 30 sec		0	14.3	1.9	2	0	0	0	0
2 min		0	14.3	1.9	<	0	D	0	0
2 min 30 sec	140	0	14.3	1.8	<	0	0	0	0
3 min	122	Ø	14.3	1 8	٢.	0	0	Ð	0
3 min 30 sec	540	0	14.4	107	<	0	0	0	0
4min		0	14.4	1.7	2	Ø	0	0	0
4 min 30 sec		0	14.4	17	<	0	Ð	0	Ô
5 min	1021	0	14.4	1.7	<	D	0	0	0
									4

Date:

5/05/2016

Notes:

Standing Water Level (SWL) is in meters below ground level

Job No: E29319K Wentworth Park South Address: Recorded by: GF Monitoring Well No: 8 Weather Conditions: SWL (m): PM PID (ppm): O Pressure (hPa): 1020

CH4 CO2 02 CH4 H2S co DP Flow Measurements Time Pressure L/H %v/v %v/v %v/v %LEL ppm ppm Ра 0 0 11.8 C 4 0 9.0 1021 0 30 sec 0 11.7 0 9.1 6 0 0 \odot 1min . 11.7 0 9-1 4 0 0 0 1 min 30 sec 0 -0 0 0 9.1 11.6 4 0 2 min 0 ~ 9.1 4 0 11.6 0 D 6 2 min 30 sec 0 -9.1 11.6 4 0 0 D \mathcal{O} 3 min 0 -11.6 4 9.1 0 0 0 \mathcal{O} 3 min 30 sec 0 . < 0 0 0 0 9,1 11.6 0 4min (and 0 9.1 11.6 0 0 0 2 0 4 min 30 sec -< 1.6 0 0 9.1 0 0 1020 0 5 min

Notes:

Standing Water Level (SWL) is in meters below ground level

5/05/2016

Date:

Job No:	E29319K	
Address:	Wentworth Park Sou	th
Recorded by:	GF	
Monitoring Well No:	0	
Weather Conditions:		
SWL (m):		
PID (ppm): 0-1		
Pressure (hPa): 107	2	
	1	

west and west									
Time	Pressure	CH4	CO2	O2	CH4	H2S	со	DP	Flow Measurements
		%v/v	%v/v	%v/v	%LEL	ppm	ppm	Pa	L/H
30 sec	1023	0	11.7	35	<	0	0	0	0
1min	-	0	11.8	34	4	0	0	0	0
1 min 30 sec	-	0	11-8	3.2	<	0	Õ	0	O
2 min	5 .	0	16-9	3=1	<	0	0	0	0
2 min 30 sec	A	0	11.9	3.0	<	0	G	0	Ö
3 min		0	12.0	3.0	<	0	0	0	0
3 min 30 sec		0	12.0	7.0	2	D	0	0	0
4min		0	12.0	3-0	<	0	0	0	0
4 min 30 sec		0	12.0	5.0	C	2	0	0	0
5 min	1023							0	0
								·	

Notes: Standing Water Level (SWL) is in meters below ground level

Date:

5/05/2016

1 .

>

Job No:	E29319K						
Address:	Wentworth Park South						
Recorded by:	GF						
Monitoring Well No:	15						
Weather Conditions:	5						
SWL (m):							
PID (ppm):							
Pressure (hPa): 1027							

Time	Pressure	CH4	CO2	O2	CH4	H2S	со	DP	Flow Measurements
		%v/v	%v/v	%v/v	%LEL	ppm	ppm	Ра	L/H
30 sec	1022	ð	8.9	11.0	2	0	0	0	0
1min	-	9	8.7	11-4	<	0	0	Θ	0
1 min 30 sec	-	0	8.6	11.8	2	Ø	0	0	0
2 min		Õ	85	12.0	<	0	0	0	0
2 min 30 sec		6	8.4	12.5	4	0	0	0	0
3 min	(R)	Ø	8.2	12.7	<	0	0	0	0
3 min 30 sec		0	8.2	12.9	2	0	Õ	0	0
4min		0	8.1	13.1	4	0	Ð	0	0
4 min 30 sec	۲	0	91	13.1	4	Ю	θ	0	0
5 min	1022	Ø	8.1	17.0	4	д	0	0	0

Notes: Standing Water Level (SWL) is in meters below ground level

5/05/2016

No. 1